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Abstract. In this paper, we propose novel Intelligent quaternion OFDM-
telecommunication systems based on many-parameter complex and quaternion 
transform (MPFT). The new systems use inverse MPFT (IMPFT) for modulation 
at the transmitter and direct MPFT (DMPFT) for demodulation at the receiver. 
The purpose of employing the MPFT is to improve:  1) the PHY-LS of wireless 
transmissions against to the wide-band anti-jamming and anti-eavesdropping 
communication; 2) the bit error rate (BER) performance with respect to the con-
ventional OFDM-TCS; 3) the peak to average power ratio (PAPR). Each MPFT 
depends on finite set of independent parameters (angles). When parameters are 
changed, many-parametric transform is also changed taking form of different 
quaternion orthogonal transforms. For this reason, the concrete values of parame-
ters are specific “key” for entry into OFDM-TCS. Vector of parameters belong to 
multi-dimension torus space. Scanning of this space for find out the “key” (the 
concrete values of parameters) is hard problem.  

Keywords: Many-parameter transforms, complex and quaternion Fourier trans-
form, OFDM, noncommutative modulation and demodulation, telecommunica-
tion system, anti-eavesdropping communication. 

1. Introduction 

In today’s world, an important aspect of communication and technology is security. 
Wars are being fought in the virtual world rather than in the real world. There is a 
rapid increase in cyber warfare. Ensuring information security is of paramount im-
portance for wireless communications. Due to the broadcast nature of radio propaga-
tion, any receiver within the cover range can listen and analyze the transmission with-
out being detected, which makes wireless networks vulnerable to eavesdropping and 
jamming attacks. Orthogonal Frequency-Division Multiplexing (OFDM) has been 
widely employed in modern wireless communications networks. Unfortunately, con-
ventional OFDM signals are vulnerable to malicious eavesdropping and jamming 
attacks due to their distinct time and frequency characteristics. The communication 
that happens between the two legitimate agents needs to be authorized, authentic and 
secured. Hence, in order to design a secured communication, we need a secret key 
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that can be used to encode the data in order to be prevented from phishing. Therefore, 
there is a need to generate a secret key with the existing information available. This 
key should not be shared, as the wireless channel remains vulnerable to attack. So, the 
key should be generated by communicating legitimate agents. Traditionally, crypto-
graphic algorithms/protocols implemented at upper layers of the open systems inter-
connection (OSI) protocol stack, have been widely used to prevent information dis-
closure to unauthorized users [1]. However, the layered design architecture with 
transparent physical layer leads to a loss in security functionality [2], especially for 
wireless communication scenarios where a common physical medium is always 
shared by legitimate and non-legitimate users. Moreover, the cryptographic protocols 
can only offer a computational security [3]. As an alternative, exploiting physical 
layer characteristics for secure transmission has become an emerging hot topic in 
wireless communications [4–7]. The pioneering work by Wyner in [4] introduced the 
concept of “secrecy capacity” as a metric for PHY-layer security (PHY-LS). It is 
pointed out that perfect security is in fact possible without the aid of an encryption 
keys when the source-eavesdropper channel is a degraded version of the source-
destination (main) channel. 

As the physical-layer transmission adversaries can blindly estimate parameters of 
OFDM signals, traditional upper-layer security mechanisms cannot completely ad-
dress security threats in wireless OFDM systems. Physical layer security, which tar-
gets communications security at the physical layer, is emerging as an effective com-
plement to traditional security strategies in securing wireless OFDM transmission. 
The physical layer security of OFDM systems over wireless channels was investigat-
ed from an information-theoretic perspective in [8].  

In this paper, we propose a simple and effective anti-eavesdropping and anti-
jamming Intelligent OFDM system, based on many-parameter complex or quaternion 
Fourier transforms (MPFTs). 1 22

( , ,..., ).n qϕ ϕ ϕ
 
In this paper, we aim to investigate 

the superiority and practicability of MPFTs from the physical layer security (PHY-
LS) perspective. The main advantage of using MPFT in OFDM TCS is that it is a 
very flexible anti-eavesdropping and anti-jamming Intelligent OFDM TCS.  The pa-
per are organized as follows. Section 2 of the paper presents a brief introduction to the 
conventional OFDM system along with various notations used in the paper and novel 
Intelligent-OFDM-TCS based on MPFT 1 22

( , ,..., )n qϕ ϕ ϕ transforms. Section 3 and 4 

present many-parameter complex- and quaternion-valued  Fourier transforms, respec-
tively. In section 5 we introduce new many-parameter complex- and quaternion-
valued all-pass filters.  

2. Intelligent complex and quaternion  OFDM TCS 

The conventional OFDM is a multi-carrier modulation technique that is basic tech-
nology having high-speed transmission capability with bandwidth efficiency and ro-
bust performance in multipath fading environments. OFDM divides the available 
spectrum into a number of parallel orthogonal sub-carriers and each sub-carrier is 
then modulated by a low rate data stream at different carrier frequency. In OFDM 
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system, the modulation and demodulation can be applied easily by means of inverse 
and direct discrete Fourier transforms (DFT). The conventional OFDM will be denot-
ed by the symbol - .N OFDM Conventional OFDM-TCS makes use of signal orthog-
onality of the multiple sub-carriers 2 /j kn Ne π (discrete complex exponential harmonics). 
All sub-carriers  { } { } 11 2 /

0 0
( )

NN j kn N
k k k

n e
−− π

= =
=subc form matrix of discrete orthogonal Fou-

rier transform [ ] 11 2 /
, 0 , 0

( ) .
NN j kn N

N k k n k n
n e π −−

= =
 = ≡  subc At the time, the idea of using the 

fast algorithm of different orthogonal transforms [ ] 1

, 0
( ) N

N k k n
n −

=
= subc for a software-

based implementation of the OFDM’s modulator and demodulator, transformed this 
technique from an attractive [9,10]. OFDM-TCS, based on arbitrary orthogonal (uni-
tary) transform N will be denoted as - .N OFDM The idea which links -N OFDM  
and -N OFDM  is that, in the same manner that the complex exponentials 

{ } 12 /

0

Nj kn N

k
e

−π

=
are orthogonal to each-other, the members of a family of N -sub-carriers 

{ } 1

0
( ) N

k k
n −

=
subc  (rows of the matrix N ) will satisfy the same property.  

The -N OFDM reshapes the multi-carrier transmission concept, by using carriers 

{ } 1

0
( ) N

k k
n −

=
subc

 
instead of OFDM’s complex exponentials { } 12 /

0

Nj kn N

k
e

−π

=
. There are a 

number of candidates for orthogonal function sets used in the OFDM-TCS: discrete 
wavelet sub-carriers [11,12], Golay complementary sequences [13-15], Walsh func-
tions [16,17], pseudo random sequences [18,19]. 

Intelligent-OFDM TCS can be described as a dynamically reconfigurable TCS that 
can adaptively regulate its internal parameters as a response to changes in the sur-
rounding environment. One of the most important capacities of Intelligent OFDM 
systems is their capability to optimally adapt their operating parameters based on 
observations and previous experiences. There are several possible approaches towards 
realizing such intelligent capabilities. In this work, we aim to investigate the superior-
ity and practicability of MPFTs from the physical layer security perspective.  

In this work, we propose a simple and effective anti-eavesdropping and anti-
jamming Intelligent OFDM system, based on many-parameter transform. In our Intel-
ligent-OFDM-TCS we use complex or quaternion MPFTs 1 2( , ,..., )N qϕ ϕ ϕ

 
instead of 

ordinary DFT N . Each MPFT depends on finite set of free parameters 

1 2( , ,..., )qϕ ϕ ϕ=θ , and each of them can take its value  form 0 to 2 .π  When parame-
ters are changed, MPFT is changed too taking form of known (and unknown) com-
plex or quaternion transforms. The vector of parameters 

1 2( , ,..., ) [0, 2 ] [0,2 ]q
q qϕ ϕ ϕ π π= ∈ =θ Tor  belongs to the -q D  torus . When the vector 

1 2( , ,..., )qϕ ϕ ϕ  runs completely the q -D torus [0,2 ]q πTor , the ensemble of the or-
thogonal quaternion transforms is created.  Intelligent OFDM system uses some con-
crete values of the parameters 0 0 0

1 1 2 2, ,..., ,q qϕ ϕ ϕ ϕ ϕ ϕ= = = i.e., it uses a concrete reali-

zation of MPFT 0 0 0 0
1 2( , ,..., )N N qϕ ϕ ϕ≡  . The vector 0 0 0

1 2( , ,..., )qϕ ϕ ϕ  plays the role 



Advances in Intelligent Systems and Computing                                             1126(2020) 
 

 
 

of some analog key (see Fig. 1), whose knowing is necessary for entering into the 
TCS with the aim of intercepting the confidential information.  
 

 
Fig. 1. Key of parameters 1 2( , , ..., )qϕ ϕ ϕ  

Quantity of parameters can achieve the values 10 000p = . So, searching the vector 
key by scanning the 10000-dimensional torus 10 000[0, 2 ]π

 
with the aim of finding the 

working parameters 0 0 0
1 2( , ,..., )qϕ ϕ ϕ is very difficult problem for the enemy cyber-

means. But if, nevertheless, this key were found by the enemy in the cyber attack, 
then the system could change values of the working parameters for rejecting the ene-
my attack. If the system is one of the TCP type, then in such a case, it will transmit 
the confidential information on the new sub-carriers (i.e., in the new orthogonal ba-
sis). As a result, the system will counteract against the enemy radio-electronic attacks. 

MPFT  ( )N θ  has the form of the product of the sparse Jacoby rotation matrixes 
and which describes a fast algorithm for this transform. The main advantage of using 
MPFT in OFDM TCS is that it is a very flexible anti-eavesdropping and anti-jamming 
Intelligent OFDM TCS. To the best of our knowledge, this is the first work that utiliz-
es the MPT theory to facilitate the PHY-LS through parameterization of unitary trans-
forms. 

 
Fig. 2. Block diagram of Intelligent OFDM-TCS 

We do study of Intelligent ( )N θ -OFDM-TCS to find out optimal values of pa-
rameters optimized PARP, BER, SER, anti-eavesdropping and anti-jamming effects 
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(see next parts of our work). For simplicity, we consider a single-input single-output 
OFDM (SISO-OFDM) setup with N sub-carriers (see Fig. 2). Let 

( ) ( ){ }
( ) ( ){ }

0 1 1

0 1 1

, ,...,( )
0 1 1

, ,...,( )
0 1 1

, ,..., {0,1} ,
2 -

, ,..., {0,1}

d

d

b b b d
d

d

b b b d
d

Z Z b b b

Q Q b b b

−

−

−

−

 = ∈ = ∈= 
 = ∈ = ∈


b

b

С b
CD

b  

be constellation diagrams on the complex plane С  or on the quaternion algebra  
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(stars) and numbered by binary d -digital numbers ( )0 1 1, ,..., {0,1} .d

db b b −= ∈b  Here 

{ }0,1 d is d -D Boolean cube. We interpret row-vector ( )0 1 1, ,..., db b b −=b  as an ad-

dress of  star ( )0 1 1, ,...,( ) db b bZ Z −=b  (or ( )0 1 1, ,..., db b bQ − ) in computer memory. Let us introduce 
the following designations 

( )
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where CM  and 1−CM  are constellation direct and inverse mappings. 
The principle of any OFDM system is to split the input 1-bit 

stream [ ],  0,1,... b m m =  into d -bit stream ( 2
dB -valued stream):  [ ] [ ]b m b nd r= + →  

( )0 1[ ] [ ],..., [ ],..., [ ]r dn b n b n b n−=b , where 2 {0,1}d d∈ =b B , m nd r= + , 0,1,..., 1r d= −  

and 0,1,2... .n =  Here m  is the real discrete time, n  is the “time” for d -bit stream 
( )nb  (i.e., the d -decimation “time” with respect to real discrete time). The 2

dB -
valued sequence ( )nb  is split into N  sub-sequences (sub-streams) 

[ ] ( )0 1[ ] [ ] [ ],..., [ ],..., [ ] ,k Nn lN k l l l l−= + → =b b B b b b  where n lN k= + , 0,1,..., 1k N= −  

and 0,1,2...l = . The row-vector ( )0 1 1[ ] [ ], [ ],..., [ ],..., [ ]k Nl l l l l−=B b b b b  is called the 
thl {0,1}d -valued time-slot. Here l  is the “time” for time-slot [ ]lB  (i.e., the N -

decimation “time” with respect to d -bit stream “time” n  and Nd -decimation “time” 
with respect to real discrete time m ). 

The data of the thl  time-slot [ ]lB  is first being processed by complex or quater-

nion constellation mappings: { } ( [ ]) [ ] [ ] ,
kk k l

kl l Z→ = bb CM b  or { } ( [ ]) [ ] [ ] ,
kk k l
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{ }

{ }

{ }

{ }

{ }

{ }

0 0

1 1

( [ ]) ( [ ])0 0
0 0

4 ( [ ]) ( [ ])( [ ]) ( [ ])

1 1( [ ]) ( [ ])
1 1

[ ] [ ]

,   or [ ] [ ]

[ ] [ ]

k k

N N

l l

l lk kl l
k k

N Nl l
N N

Q Zl l

Zl lQ Z

l lQ Z
− −− −

− −

     
     
    
    

= = = =    
    
    
    
      

b b

B Bb b

b b

CM b CM b

Q CM b CM b

CM b CM b

 
 

 

 

.




 
 
 
 
 
 
 

 



Advances in Intelligent Systems and Computing                                             1126(2020) 
 

 
 

Complex numbers and quaternions 
( [ ])

( [ ])
( [ ]):

l
l

l

Z
S

Q


= 


B
B

B
 ( 0,1,..., 1)k N= −  are called data 

symbols. These symbols are then input into the inverse (complex or quaternion) 
MPFT 1( )N

− θ  block:  
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The sequences of coefficients ( [ ]) ( [ ]) ( [ ])
0 1,..., ,...,l l l

v Ns s s −
B B B

 can be conveniently visualized 
as discrete composite complex-valued or quaternion-valued signals to be transmitted. 
They are sums of modulated complex-valued or quaternion-valued ( | )k vsubc θ  sub-

carriers:  
1
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for quaternion TKS (it is noncommutative modulation) , where N is the number of 
sub-carriers. All sub-carriers transmit dN  data bits. Let the symbol 0key =  means 

multiplication of the data vector ( )( [ ]) ( [ ]) ( [ ]) ( [ ])
0 1,..., ,...,l l l l

v NQ Q Q −=B B B BQ  on the ma-

trix element ( | )k vsubc θ  of [ ] 11
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( ) ( | ) N
N k k v
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=θ subc θ  from the left (L) and the sym-

bol 1key =  means the multiplication from the right (R). Then the N -D binary vector 

0 1 1( , ,..., )Nkey key key −=key  is the digital vector key (see Fig. 3) showing onto the way, 

by which the multiplication of the MPFT matrix 1( )N
− θ  on the data vector ( [ ])lBQ  

has to be implemented: 
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where { } , 1
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k k n
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subc θ  are the set of matrix elements of quaternion transform, i.e., 
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So, the number of such keys is equal to 

2N . They form the Boolean cube 2
NB . Knowing this digital key is necessary to enter 

into the Intelligent OFDM TCS. 
Digital data ( [ ]) ( )lBs θ  is interpolated by digital-to-analog converter 

DAC
( [ ]) ( [ ])( )  ( | ),l ls t→B Bs θ θ ( )[0, ]t T∈  in generating the analog signal ( [ ]) ( | )ls tB θ . It is 
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then AM-modulated 02( [ ])1 ( | ) j f tlm s t e π + ⋅ ⋅ 
B θ  to the carrier frequency 0f  and radiat-

ed to a wireless medium, the so-called radio channel (RF), before it is picked up at the 
receiver side. Here m  is the AM-modulation index.  

 
Fig. 3. N -D binary vector-key 0 1 1( , ,..., )Nkey key key −=key   

 
At the receiver side, after AM-demodulation and discretization by analog-to-digital 

converter (ADC) from received signal ( | )r t θ we obtain the received symbols 
( [ ]) ( )lBr θ . They are the transmitted symbols ( [ ]) ( )lBs θ

 
plus additive Gaussian noise 
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At the receiver side the process is reversed to obtain the data. The signal 
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After that the maximum-likelihood algorithm (MLA) gives the optimal estimation of 
the signal ( [ ])lBZ  or ( [ ])lBQ : 
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where ρ  is the Euclidean distance on C  or   and the symbol "^ "over means esti-
mated value. Finally, estimation of bit stream is given as 
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for complex TKS and 
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for quaternion NKS,  where [ ] [ ]ˆ ˆˆ ˆ[ | )] [ | )] ( ) | |k l lN k b lN k d r b m→ + → + + =b θ b θ θ θ  is an 

estimation of initial bit stream.  Here, [ ]( )m lN k d r lNd kd r= + + = + +  and 0,1,2,... ,l =  
0,1,..., 1,k N= −  0,1,..., 1.r d= −  The BER and SER for thl time slot are defined as 
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As we see in digital Intelligent-OFDM TCS, many-parameter sub-carriers are used 

to carry the digital data { } 1
( [ ])

0

k N
l

k
k

S
−

=

b . By this reason, all coefficients  
( [ ]) ( [ ]) ( [ ])
0 1( ; ),..., ( ; ),..., ( ; )l l l

v Ns s s −
B B Bθ key θ key θ key  depend on parameters 1( ,..., )q= ϕ ϕθ  and 

vector 0 1 1( , ,..., )Nkey key key −=key . This dependence can be used for multiple purposes 
such as, anti-eavesdropping and anti-jamming in order to increase the system secrecy. 
It is interesting to minimize the peak to average power ratio [ | ]lPARP θ , the bit 
error rate [ | ]lBER θ , symbol error rate [ | ]lSER θ , inter-symbol interference 

[ | ]lISI θ  by chaining of parameters θ . 

3. Fast many-parameter complex Fourier transforms 

Fast Fourier transform is the following iteration procedure (see Fig. 4): 

( )( )( )1

1 1
2

22 2 2 2 2
1

1 ,
2

r

r n r n r r n r

n

n
r

I I I Iε
−

− − − − −
⋅

=

   = ⊗ ⊕∆ ⋅ ⊗ ⊗   ∏ F            (1) 

where 2

1 1
1 1
 

=  − 
F , ( ) ( )1 1 1 12 2 1 2 2 2 (2 1)

2 2
1, , ,..., .

r r r r n r

n r n rε ε ε ε
− − − − −

− −
⋅ ⋅ ⋅ −∆ = Diag  Its iteration 

steps are indexed by integer { }1,2,...,r n∈ . For each iteration r  we introduce digital 
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representation for { }10,1,..., 2 1 :np −∈ −  1( , ) 2 .r
r r r rp p k s k s−= = +  where { }10,1,..., 2 1 ,r

rk −∈ −  

{ }0,1,..., 2 1n r
rs −∈ − . Let and 1( , ) ( , ) 2 .n

r r r rq k s p k s −= +  Obviously, { }12 , ,..., 2 1 .n nq −∈ −  

 
Fig. 4. Fast Fourier transforms for 8N = . 
 
For fixed integer { }1,2,...,r n∈  and { }, 0,1,..., 2 1n r

r rp q −∈ −  let  

( )1 1 1

2 2

( , ) ( , ) ( ) ( ) ( ) ( )
2 2 2

| 1,..., ,1,...,1 |1,..., ,1,...,1 ,

n r n r

r r r r r r r r
n r n r n rr r r r

r r

p q p q a p b q a p b q
p q p q

p p

ε ε ε ε

− −

− + − + − +

 
 = =  
  

∆ ∆ Diag
 

 

 

where ( ), ( )r ra a p b b q= =  are integers depending on positions rp  and 2n r
r rq p −= + , 

respectively. Here exp(2 / 2 ).njε π=  For ( )( )12
2 2

r

n r n rI ε
−

− −
⋅⊕ ∆  from (1) we have  

( ) ( ) ( )
( )

1 1 1 1

1

1

2 1 2 2 2 (2 1) 2
2 2 2 2

2 1
( , 2 ) 2
2 2

0

1,1, ,...,1 1, , ,...,

1 | .

r r r n r r
r

n r n r n r n rr

n r
n r r

r r r r
n r n rr r

r

p
p

p p p p
p p

p

I ε ε ε ε

ε

− − − − −

− − − −

−
− −

− + −

⋅ ⋅ ⋅ − ⋅

−
+ ⋅

+
=

⊕ ∆ = ⊕ =

= ∆∏

Diag Diag
 

Now we are going to use in fast Fourier transform the following radix- 1(2 ,2 )r n r− −  

representation of { }1, 0,1,..., 2 1 :np q −∈ −   1( , ) 2 ,r
r r r rp p k s k s−= = +  ( , ) ( , )r r r rq k s p k s= +    

2 ,n r−+  where { }10,1,..., 2 1 ,r
rk −∈ − { }0,1,..., 2 1n r

rs −∈ −  and { }1,2,...,r n∈ . We can write 

diagonal matrices of  FFT (for all { }1,2,...,r n∈ ) as 

( )( )
1

1

1

2 1 2 1
2 ( ( , ), ( , )) 2

( , ) ( , )2 2 2 2
0 0

(1 | ).
r n r

r n r
r r r r r r r

r n r n r nr r r r r

r r

p p k s q k s s s
p p k s q k s

k s

I I ε ε
− −

− −

− − −

− −
⋅ ⋅

= =

⊗ ⊕∆ = ∆∏ ∏       (2) 

Then fast DFT (1)  takes the following form 

( ) ( )
1 12 1 2 1 2 1 2 1

( ( , ), ( , )) 2 ( , ), ( , )
( , ) ( , )2 2

1 0 0 0 0

1 / 4
r n r r n r

n r
r r r r r r r r r r

n nr r r r

r r r r

n
p k s q k s s s p k s q k s

p k s q k s
r k s k s

ε π
− − − −

−
− − − −

⋅

= = = = =

    
= ⋅ =         

∆∏ ∏ ∏ ∏ ∏ J  
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( ) ( )
12 1 2 1

( ( , ), ( , )) 2 ( , ), ( , )
( , ) ( , )2 2

1 0 0

1 / 4 ,
n r r

n r
r r r r r r r r r r

n nr r r r

r r

n
p k s q k s s s p k s q k s

p k s q k s
r s k

ε π
− −

−
− −

⋅

= = =

  = ⋅    
∆∏ ∏ ∏ J         (3) 

where  

( , ) , ,

, ,

    

 ,  

1 0 0 0

0 0

1
0 0

0 0 0 1

( )p q
N

p q p q
pq

p q p q

p q

p

q

c s

s c

ϕ =

 
 
 
 
 
 
 − 
 
  
 

J

  

    

  

   

  

    

  

 

is the Jacobi rotation, , , , ,cos( ),  sin( ).p q p q p q p qc sϕ ϕ= =
 
 

   

   
Fig. 5. Fast complex-valued many-parameter Fourier transforms for 8N = , where we have 

12 12nn −⋅ =  ϕ -parameters ( )1 1 1 1 1
0 1 2 3, , , ,ϕ ϕ ϕ ϕ=φ  ( )2 2 2 2 2

0 1 2 3, , , ,ϕ ϕ ϕ ϕ=φ  ( )3 3 3 3 3
0 1 2 3, , , ,ϕ ϕ ϕ ϕ=φ  

and 2 24nn ⋅ =  γ -parameters ( )1 1 1 1
0 1 7, ,..., ,γ γ γ=γ  ( )2 2 2 2

0 1 7, ,..., ,γ γ γ=γ  ( )3 3 3 3
0 1 7, ,..., .γ γ γ=γ  

 
Our  generalization of (3) is based on Jacobi matrices ( , )

( , )2
( )n

p q r
p qϕJ  instead of ( , ) / 4( )p q

N πJ  

and on arbitrary phasors: ( ) ( )( , ) ( , )( ( , ), ( , )) 2 ( ( , ), ( , ))
( , ) ( , )2 2

1 |
r rn r
p k s q k sr r r r r r r r r r r r r r

n nr r r r

j jp k s q k s s s p k s q k s
p k s q k s e eγ γε

−⋅ →∆ ∆ : 

 
( )

( ) ( )
1

( , ) ( , )

1 2 1 2

2 1 2 1
( ( , ), ( , )) ( ( , ), ( , ))

( ( , ), ( , ))2 2
1 0 0

, ,..., ; , ,...,

| ,
n r r

r r
p k s q k sr r r r r r r r r r r r

n n r r r r

r r

n n

n
j jp k s q k s p k s q k s r

p k s q k s
r s k

e eγ γ ϕ
− −− −

= = =

=

  = ⋅     
∆∏ ∏ ∏

φ φ φ γ γ γ

J



  (4) 

It is 13 2nn −⋅ - parameter complex-valued Fourier-like transform (see Fig. 5) with 12nn −⋅  
ϕ -parameters 
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( )1
1 1 1 1

0 1 2 1
, ,..., ,nϕ ϕ ϕ − −

=φ  ( )1
2 2 2 2

0 1 2 1
, ,..., ,nϕ ϕ ϕ − −

=φ …, ( )10 1 2 1
, ,..., ,n

n n n nϕ ϕ ϕ − −
=φ  

and 2 24nn ⋅ =  γ -parameters  

( )1 1 1 1
0 1 2 1
, ,..., ,nγ γ γ

−
=γ  ( )2 2 2 2

0 1 2 1
, ,..., ,nγ γ γ

−
=γ …, ( )0 1 2 1

, ,..., .n
n n n nγ γ γ

−
=γ  

4. Fast many-parameter quaternion Fourier transforms 

The space of quaternions denoted by   were first invented by W.R. Hamilton in 
1843 as an extension of the complex numbers into four dimensions [20]. General 
information on quaternions may be obtained from [21]. 

    Definition 1. Numbers of the form 4     a b c d= + + +q 1 i j k , where , , ,a b c d ∈R  
are called quaternions, where 1) 1  is the real unit; 2) , ,i j k  are three imaginary units. 

The addition and subtraction of two quaternions 4
1 1 1 1 1a x y z= + + +q i j k  and 

4
2 2 2 2 2a x y z= + + +q i j k   are given by 

4 4
1 2 1 2 1 2 1 2 1 2 ( ) ( ) ( ) ( ) .  a a b b b b b b k± = ± + ± + ± + ±q q i j  

The product of quaternions for the standard format Hamilton defined according as:  
( )

( ) ( ) ( )

4 4
1 2 1 1 1 1 2 2 2 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

 ( ) ( ) 

,

a b c d a b c d a a b b c c d d

a b b a c d d c a c c a d b b d a d d a b c c b

= + + + + + + = − − − +

+ + + − + + + − + + + −

q q i j k i j k

i j k

 

 

where 2 2 2 1;= = = −i j k  ,= − =i j i j k  ,= − =i k k i j  = − =j k k j i 
. The set of 

quaternions with operations of multiplication and addition forms 4-D algebra 
( )|1, , , := = + + +R i j k R Ri Rj Rk   over the real field R .  

     Number component a  and direction component 3 3b c d= + + ∈r i j k R  were 
called the scalar and 3-D vector parts of quaternion, respectively. A non–zero ele-
ment  3 bi cj dk= + +r  is called pure vector quaternion. Since =i j k , then a quater-
nion 4   1 ( )  ( ) ( )a b c d a b c d a b= + + + = + + + = + +q i j k i j i j i  ( )c d+ + = +i j z w j   is 
the sum of two complex numbers   ,a b= +z i  c d= +w i  with a new imaginary unit j .  

 Definition 2. Let 4   ( )a b c d= + + + ∈q i j k R  be a quaternion. Then 4  =q  

 a b c d a b c d= + + + = − − −i j k i j k  is the conjugate of  4q , and  4( )N =q  
4 2 2 2 2 4 4 4 4 || || a b c d= = + + + = =q q q q q   is the norm of 4q .  

Definition 3. Quaternions { }3 3( ) 1N =r r  of unit norm are called unit pure vector 

quaternions and denotes as { }3 3( ) 1N =μ μ . They form a 2-D sphere 2 3⊂ R  and 

parameterized by the Euler angles 23 ( , ) cos sin cos sin sin .β θ β β θ β θ ∈= + +μ i Sj k  
For each quaternion 3 ( , )β θμ  we have 3 32 2 3 2( , ) ( , ) ( , ) 1.β θ β θ β θ= = −μ μ μ  This 

unit-vector product identity represents the generalization of the complex-variable 
identity 2 1i = − . This means that, if in the ordinary theory of complex numbers there 
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are only two different square roots of negative unity ( i+  and i− ) and they differ only 
in their signs, then in the quaternion theory there are infinite numbers of different 
square roots of negative unity. The exponential function 

3 ( , ) 3cos  ( , )sine β θ γ βγ θ γ⋅ = +μ μ  
is called quaternion-valued phasor. 

We are going to use the expression (4) for obtaining many-parameter quaternion 
Fourier-like transform. It based on the left and right side quaternion-valued phasors:   

{ }( )
( )

( ))

1
3 3

( , ) ( , ) ( , ) ( , )

( , ) ( , )

1

2 1 2 1
( , ) ( , )( ( , ), ( , ))

2
1 0 0

( , ), ( , )
( ( , ), ( , ))2

|

|
n r r

r r r r r r r r
p k s p k s q k s q k sr r r r r r r r r r r r

n r r
p k s q k sr r r r

r r

r r r r
n r r r r

nr

r

n
p k s q k s

key key
r s k

p k s q k s r
p k s q k s

e eγ γ

ϕ

− −

=

− −
⋅ ⋅

= = =

=

 = ⋅ 
⋅ 

∆∏ ∏ ∏ μ β θ μ β θ

ω key

J



,

  (5) 

where ( )1 2 1 2 1 2 1 2, ,..., ; , ,..., ; , ,..., ; , ,...n n n n=ω φ φ φ γ γ γ β β β θ θ θ , ( , )r r

r
p k skey and  ( , )r r

r
q k skey  

are binary keys at 
3

( , ) ( , )

( , )

( , )r r r r
p k s p k sr r r r

r
p k sr rkey

e γ⋅μ β θ  and 
3

( , ) ( , )

( , )

( , ) .
r r r r
q k s q k sr r r r

r
q k sr rkey

e γ⋅μ β θ They indicate 

about the left side or the right side multiplications, respectively. Here 
( )3 3 3 3

0 0 0 1 1 1 2 1 2 1 2 1
( , ) ( , ), ( , ), ..., ( , )n n n

r r r r r r r r r r r r
p p p β θ β θ β θ

− − −
=μ β θ μ μ μ are quaterion-valued imagi-

nary units parameterized by angles ( , )r r
p pβ θ . New transform { }( )1

|
nr

r=
ω key  

is 17 2nn −⋅ - parameter quaternion-valued Fourier-like transforms with 12nn −⋅  ϕ -
parameters, 2nn ⋅  γ -, β - and θ -parameters and with the branch of binary crypto-

keys { }
1

nr

r=
key . 

5. Many-parameter complex and quaternion all-pass filters 

In this section we introduce special classes of many-parametric all-pass discrete 
cyclic filters. The output/input relation of the discrete cyclic filter is described by the 
discrete cyclic convolution: 

{ }( )
1

† ( )

0
( ) { ( )} ( ) ( ) ( * )( ) ( ) ( ),

N
i k

Nm
y n x n h n m x m h x n H k e x nϕ

−

=

= = = = ⋅ ⋅ ⋅∑Filt Diag   
                                                 

 

where ( ), ( )x n y n  are input and output signals, respectively, ( )h n  is the impulse re-
sponse, ( )( ) ( ) { ( )}i kH k H k e h nϕ= =   is the frequency response, 

N
  is difference 

modulo N  and *  is the symbol of cyclic convolution, 
1

, 0
( )

N

N n m
h n m

−

=

 =   
Filt   is the 

cyclic ( )N N× − matrix with the kernel ( )h n . We will concentrate our analysis on all-
pass filters whose frequency response can be expressed in the form 

( )( ) ( ) ,i kH k H k e ϕ=  where frequency response magnitude is constant for all frequen-

cies, for example, ( ) 1,H k ≡ 0,1,2,..., 1.k N= −  So, for all-pass filter Filt  has the 
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following complex-valued impulse ( )( ) i kh n e ϕ= ⋅  and frequency responses  
( )( ) i kH k e ϕ= . Hence, { } { }( ){ }† ( )( ) ( ) ( ) .i ky n x n e x nϕ= = ⋅ ⋅Filt Diag   We are 

going to consider this filter as a parametric filter  
{ } { }0 1 1 0 11( , ,..., )( ) † ( ) † , ,...,N Ni iii ke e e eϕ ϕ ϕ ϕ ϕϕϕ− −= = ⋅ ⋅ = ⋅ ⋅φFilt Filt Diag Diag           (6) 

with N  free parameters 0 1 1( , ,..., ).Nϕ ϕ ϕ −=φ Obviously, all-pass filter ( )φFilt  (as 
linear transform) is many-parameter unitary cyclic  ( )N N× − matrix.  

Our the first natural generalization of (6) is based on an arbitrary unitary trans-
form   instead of Fourier transform : 

{ } { }0 1 1 0 11( , ,..., )( ) † ( ) † , ,..., .N Ni iii ke e e eϕ ϕ ϕ ϕ ϕϕϕ− −= = ⋅ ⋅ = ⋅ ⋅φFilt Filt Diag Diag              (7) 

The second generalized is based on quaternion-valued exponents (phasors) 

{ }3 ( , )C C C
p p p

C
pkey
e γ θ αμ ( 0,1,..., 1)p N= −   and two quaternion Fourier transforms:   

{ } { }( )
{ }( ) { } { }( )3 3

0 0 0 1 1 1

0 1

1 1

( , ) ( , )†

1 1

, , ; , | , ,

,..., .
C C C C C C

N N N
C C

N

n nC C C L R C L r R r

r r

n nL L r R R r
key keyr r

Q e e Qγ θ α γ θ α− − −

−

= =

⋅ ⋅

= =

=

= ⋅ ⋅μ μ

QFilt α γ θ ω ω key key key

ω key Diag ω key



 
   (8) 

where ( )0 1 1, ,..., ,C C C C
Nkey key key −=key ( )0 1 1, ,..., ,C C C C

Nα α α −=α ( )0 1 1, ,..., ,C C C C
Nγ γ γ −=γ

( )0 1 1, ,..., .C C C C
Nθ θ θ −=θ   Here { }

1
,

nL L r

r=
ω key and { }

1
,

nR R r

r=
ω key  are parameters of left 

and right quaternion Fourier transforms { }( )†

1

nL L r

r
Q

=
ω key , { }( )1

nR R r

r
Q

=
ω key ,  

respectively.  

Quaternion cyclic transform { } { }( )1 1
, , ; , | , ,

n nC C C L R C L r R r

r r= =
QFilt α γ θ ω ω key key key  

has 17 2nn −⋅  left parameters ,Lω 17 2nn −⋅  right parameters Rω  and 3 2n⋅  center parame-
ters , ,C C Cα γ θ . Total number of parameters is ( ) 114 6 2nn −+ ⋅ . Moreover, QFilt  has 

three branches of binary crypto-keys { } { }
1 1

, ,
n nC L r R r

r r= =
key key key . 

6. Conclusions 

In this paper, we proposed a novel Intelligent OFDM-telecommunication systems 
based on a new unified approach to the many-parametric representation of complex 
and quaternion Fourier transforms. The new systems use inverse MPFT for modula-
tion at the transmitter and direct MPFT for demodulation at the receiver. Each MPT 
depends on finite set of independent parameters (angles), which could be changed in 
dependently of one another. For each fixed values of parameter we get the unique 
orthogonal transform. When parameters are changed, multi-parametric transform is 
changed too taking form of a set known (and unknown) orthogonal (or unitary) trans-
forms. The main advantage of using MPFT in OFDM TCS is that it is a very flexible 
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system allowing to construct Intelligent OFDM TCS for electronic warfare (EW). EW 
is a type of armed struggle using electronic means against enemy to “change the qual-
ity of information”. EW includes (consists) of suppressor and protector. Suppressor 
aims to “reduce the effectiveness” of enemy forces, including command and control 
and their use of weapons systems, and targets enemy communications and reconnais-
sance by changing the “quality and speed” of information processes. In reverse, EW 
in defense protects such assets and those of friendly forces. In order to protect corpo-
rate privacy and sensitive client information against the threat of electronic eaves-
dropping and jamming protector uses intelligent OFDM-TCS, based on MPFTs. The 
system model that is going to be used in this work is know as the wiretap channel 
model, which was introduced in 1975 by Wyner [4]. This model is composed of two 
legitimate users, named Alice and Bob.  

A legitimate user (Alice) transmits her confidential messages to a legitimate re-
ceiver (Bob), while Eve will be trying to eavesdrop Alice’s information. An active 
jammer, named Jamie, attempts to jam up this information. Alice transmits her data 
using OFDM with N  complex- or quaternion-valued sub-carriers 

{ } 10 0
1 0

( | ,..., ) ,
N

k q k
n

−

=
ϕ ϕqsubc

 
i.e. she use the unitary transform 0 0( )N N= θ   with fixed 

parameters 0 0 0
1( ,..., )qϕ ϕ=θ . When sub-carriers { } 10 0

1 0
( | ,..., )

N

k q k
n

−

=
ϕ ϕqsubc  (i.e. unitary 

transform 0( )N θ ) of Alice’s and Bob’s Intelligent-OFDM-TCS are identified by 
Eve (or Jammi) this TCS can be eavesdropped (or jammed) by means of Radio-
Electronic Eavesdropping Attack (REEA). As an anti-eavesdropping and anti-
jamming measures, Alice and Bob can use the following strategy:  they can select 
new sub-carriers by changing parameters of ( )N θ  in the periodical (or in pseudo 
random) manner: 0 1( ) ( ) ... ( ) ...      0,1, 2,... ,r

N N N r→ → → → =θ θ θ   where 
0r r= + ⋅∆θ θ θ  and 0θ

 
are initial values of parameters at the initial time 0t . 
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