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Abstract. In this paper, we aim to investigate the superiority and practicability of 
many-parameter quaternion Fourier transforms (MPQFT) from the physical layer 
security (PHY-LS) perspective. We propose novel Intelligent OFDM-
telecommunication system (Intelligent-OFDM-TCS), based on MPFT. New sys-
tem uses inverse MPQFT for modulation at the transmitter and direct MPQFT for 
demodulation at the receiver. The purpose of employing the MPFTs is to im-
prove the PHY-LS of wireless transmissions against to the wide-band anti-
jamming communication. Each MPQFT depends on finite set of independent pa-
rameters (angles), which could be changed independently one from another. 
When parameters are changed, multi-parametric transform is also changed taking 
form of a set known (and unknown) orthogonal (or unitary) transforms. We im-
plement the following performances as bit error rate (BER), symbol error rate 
(SER), the Shannon-Wyner secrecy capacity (SWSC) for novel Intelligent-
MPWT-OFDM-TCS. Simulation results show that the proposed Intelligent 
OFDM-TCS have better performances than the conventional OFDM system 
based on DFT against eavesdropping 

Keywords: Many-parameter transforms, quaternion Fourier transform, OFDM, 
telecommunication system, anti-eavesdropping communication 

1. Introduction 

With most of the data transmission systems nowadays use orthogonal frequency divi-
sion multiplexing telecommunication system (OFDM-TCS) based on the discrete 
Fourier transform (DFT). Some versions of it is: digital audio broadcast (DAB), digi-
tal video broadcast (DVB), and wireless local area network (WLAN), standards such 
as IEEE802.11g and long term evolution (LTE and its extension LTE-Advanced, Wi-
Fi (IEEE 802.11), worldwide interoperability for microwave ACCESS (WiMAX 
IEEE 802.16) or ADSL [1]. The concept of using parallel data broadcast by means of 
frequency division multiplexing (FDM) was printed in mid 60s [2].  The conventional 
OFDM is a multi-carrier modulation technique that is basic technology having high-
speed transmission capability with bandwidth efficiency and robust performance in 
multipath fading environments. OFDM divides the available spectrum into a number 
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of parallel orthogonal sub-carriers and each sub-carrier is then modulated by a low 
rate data stream at different carrier frequency. In OFDM system, the modulation and 
demodulation can be applied easily by means of inverse and direct discrete Fourier 
transforms (DFT). The conventional OFDM will be denoted by the symbol 

- .N OFDM  All sub-carriers  { } { } 11 2 /
0 0

( )
NN j kn N

k k k
n e

−− π
= =
=subc

 
form matrix of discrete 

orthogonal Fourier transform [ ] 11 2 /
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At the time, the 

idea of using the fast algorithm of different orthogonal transforms 
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for a software-based implementation of the OFDM’s modulator 

and demodulator, transformed this technique from an attractive. OFDM-TCS, based 
on arbitrary orthogonal (unitary) transform N  will be denoted as - .N OFDM The 
idea which links -N OFDM  and -N OFDM  is that, in the same manner that the 
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     The -N OFDM reshapes the multi-carrier transmission concept, by using carriers 
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instead of OFDM’s complex exponentials { } 12 /
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k
e

−π

=
. There are a 

number of candidates for orthogonal function sets used in the OFDM-TCS: discrete 
wavelet sub-carriers [3], Golay complementary sequences [4], Walsh functions [5], 
pseudo random sequences [6]. 
      In this work, we propose a simple and effective anti-eavesdropping and anti-
jamming Intelligent OFDM system, based on quaternion many-parameter transform 
(QMPT) 1 2( , ,..., )N qϕ ϕ ϕ

 
instead of ordinary DFT N .  

 
Fig. 1. q -D torus [0, 2 ] [0, 2 ]q

q π π=Tor  

    Each QMPT depends on finite set of free parameters 1 2( , ,..., )qϕ ϕ ϕ=θ , and each of 
them can take its value  form 0 to 2 .π  When parameters are changed, QMPT is 
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changed too taking form of known (and unknown) quaternion transforms. The vector 
of parameters 1 2( , ,..., ) [0, 2 ] [0,2 ]q

q qϕ ϕ ϕ π π= ∈ =θ Tor  belongs to the -q D  torus 
 
(see 

Fig. 1). When the vector of parameters 1 2( , ,..., )qϕ ϕ ϕ  runs completely the q -D torus 
[0,2 ]q πTor , the ensemble of the orthogonal quaternion transforms is created.  Intelli-

gent OFDM system uses some concrete values of the parameters 
0 0 0

1 1 2 2, ,..., ,q qϕ ϕ ϕ ϕ ϕ ϕ= = = i.e., it uses a concrete realization of QMPT 
0 0 0 0

1 2( , ,..., )N N qϕ ϕ ϕ≡  . The vector 0 0 0
1 2( , ,..., )qϕ ϕ ϕ  plays the role of some analog 

key (see Fig. 2), whose knowing is necessary for entering into the TCS with the aim 
of intercepting the confidential information.  
 

 
Fig. 2. Key of parameters 1 2( , , ..., )qϕ ϕ ϕ  

Quantity of parameters can achieve the values 10 000p = . So, searching the vector 
key by scanning the 10000-dimensional torus 10 000[0, 2 ]π

 
with the aim of finding the 

working parameters 0 0 0
1 2( , ,..., )qϕ ϕ ϕ is very difficult problem for the enemy cyber-

means. But if, nevertheless, this key were found by the enemy in the cyber attack, 
then the system could change values of the working parameters for rejecting the ene-
my attack. If the system is one of the TCP type, then in such a case, it will transmit 
the confidential information on the new sub-carriers (i.e., in the new orthogonal ba-
sis). As a result, the system will counteract against the enemy radio-electronic attacks. 
    The enemy problem is also complicated by the fact that the QMPT is additionally 
arranged with digital key that is joined with the non-commutativity of the quaternion 
multiplication operation. In the QMPT matrix multiplication on the data vector, each 
element of the vector can be multiplied on the matrix element either from the left or 
from the right. Let the symbol “0” means multiplication of the data vector 

1( ,..., ,..., )k Nv v v=v  on the matrix element from the left (L) and the symbol “1” 
means the multiplication from the right (R). Then the N -D binary vector 1 2( , ,..., )Nb b b  
is the digital key (see Fig. 3) showing onto the way, by which the multiplication of the 
QMPT matrix on the data vector has to be implemented: 
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where { }
, 1

qmp ( )k
Nb

k k n
n

=
 are the set of matrix elements of quaternion transform, i.e., 

( ) ( )1 2, ,...,
1 2 1 2 , 1

( , ,..., ) qmp | , ,..., .N k
Nb b b b

q k p k n
nϕ ϕ ϕ θ θ θ

=
 =  

 
So, the number of such keys is 

equal to 2N . They form the Boolean cube 2
NB . Knowing this key is necessary to enter 

into the Intelligent OFDM TCS. 
 

 
Fig 3. N -D binary vector-key 1 2( , , ..., )Nb b b   
 

Thus, the space of keys is the Descartes product 2[0, 2 ] .N
q π ×Tor B  Searching the 

pair of keys 1 2( , ,..., ) [0, 2 ]q
qϕ ϕ ϕ π∈Tor

 
and 1 2 2( , ,..., ) N

Nb b b ∈B  in the space of keys is 
very difficult problem for the enemy, especially, when we have the OFDM TCS. Such 
a system can also defend itself by changing the values of the working parameters and 
crypto key accordingly to some law that is known for the transmitter and receiver in 
advance. The law can be deterministic or the pseudo-random (similarly to the law, by 
which the contemporary TCSs change their working frequency).  The main advantage 
of using QMPT in OFDM TCS is that it is a very flexible anti-eavesdropping and 
anti-jamming Intelligent OFDM TCS. These TCS have additional advantages in com-
parison with the classic TCS: the multi-parametric transforms allow one to optimize 
(and as a result, to enhance) the technical characteristics of the system (by changing 
its parameters) such as the PARP (peak to average power ratio), BER (bit error rate), 
SER (symbol error rate), and the ISI (inter-symbol interference). 
       The paper are organized as follows. Section 2 of the paper presents a brief intro-
duction to the quaternion algebra. Section 3 and 4 present quaternion Fourier trans-
forms.   

2. Quaternions  

The space of quaternions denoted by ( )R  were first invented by W.R. Hamilton in 
1843 as an extension of the complex numbers into four dimensions [7]. General in-
formation on quaternions may be obtained from [8]. 
    Definition 1. Numbers of the form 4     a b c d= + + +q 1 i j k , where , , ,a b c d ∈R  are 
called quaternions, where 1) 1  is the real unit; 2) , ,i j k  are three imaginary units. We 
speck that quaternions 4 a b c d= + + +q i j k  are written in the standard format. 
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The addition and subtraction of two quaternions 4
1 1 1 1 1a x y z= + + +q i j k  and 

4
2 2 2 2 2a x y z= + + +q i j k   are given by  

4 4
1 2 1 2 1 2 1 2 1 2 ( ) ( ) ( ) ( ) .  a a b b b b b b k± = ± + ± + ± + ±q q i j  

The product of quaternions for the standard format Hamilton defined according as:  
( )

( ) ( ) ( )

4 4
1 2 1 1 1 1 2 2 2 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

 ( ) ( ) 

,

a b c d a b c d a a b b c c d d

a b b a c d d c a c c a d b b d a d d a b c c b

= + + + + + + = − − − +

+ + + − + + + − + + + −

q q i j k i j k

i j k

 

 

where 2 2 2 1;= = = −i j k  ,= − =i j i j k  ,= − =i k k i j  = − =j k k j i 
. The set of 

quaternions with operations of multiplication and addition forms 4-D algebra 
( )( ) |1, , , := = + + +R R i j k R Ri Rj Rk   over the real field R .  

     Number component a  and direction component 3 3b c d= + + ∈r i j k R  were called 
the scalar and 3-D vector parts of quaternion, respectively. Now these components 
are denoted as 4( )S a= ∈q R  and 3( ) .V b c d= = + +q r i j k A non–zero element  
3 bi cj dk= + +r  is called pure vector quaternion. Hence, according to W. Hamilton 
every quaternion is the sum of a scalar number and a pure vector quaternion 
4 3 ( ) ( ) ( )a b c d a S V= + + + = + = +q i j k r q q , where 4( )a S= q , 4 3( )V =q r .  Since 

=i j k , then a quaternion 4   1 ( )  ( ) ( )a b c d a b c d a b= + + + = + + + = + +q i j k i j i j i  
( )c d+ + = +i j z w j   is the sum of two complex numbers   ,a b= +z i  c d= +w i  with 

a new imaginary unit j . So, every quaternion can be represented in several ways: 
(1) as a 4-D hypercomplex number 4   )  ( , , ,a b c d a b c d= + + + =q i j k , 

, , ,a b c d ∈R  (standard 4-D format); 
(2) as a sum of a scalar and vector parts 3 3( ,  )a a= + =q r r  (1,3-D hypercomplex 

format); 
(3) as a 2-D hypercomplex numbers 2,2 ( , )= + =q z w j z w , , ∈z w C  (2,2-D 

complex format). 
The product of quaternions for the last two forms Hamilton defined as: 

( )( ) [ ]( )
4 4

1 2 1 1 2 2 1 2 1 2 1 2 1 2
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1 2 1 1 2 2 1 2 1 2 1 2 2 1 1 2

 ( ) ( ) ( ) ( ) ,
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where 4 4 3 3 4 4 3 3 3 3
1 2 1 2 1 2 1 2 1 2 2 1 1 2( ) | ,  ( ) .S a a V a a= − = + + ×q q r r q q r r r r   Here 3 3

1 2 1 2| b b= +r r  

1 2 1 2c c d d+ +  and  ( ) ( ) ( )3 3
1 2 1 2 1 2 1 2 1 2 1 2 1 2c d d c b d d b b c c b× = − − − + −r r i j k  are scalar and 

vector products, respectively.  
    Definition 2. Let 4   ( )a b c d= + + + ∈q i j k R  be a quaternion ( , , ,a b c d ∈R ). Then 
4   ,a b c d a b c d= + + + = − − −q i j k i j k 4 3 3  a a= + = −q r r  is the conjugate of  4q , 

4 4 2 2 2 2 4 4 4 4( )  || ||N a b c d= = + + + = =q q q q q q   is the norm of 4q , and 
4 4 4( ) 2tr a= = +q q q  is the trace of  4q . Therefore 4 2 4 4 2 4( ) ( ) 0.tr N− + =q q q q  
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Proposition 1. We have 4 4 4 4
1 2 2 1=q q q q   and 4 4 4 4

1 2 1 2( ) ( ) ( )N N N= ⋅q q q q f 
or every 4 4

1 2, ( ).∈q q R  Note that 1 1,   1.= = = =i j k  

Definition 3. Quaternions { }4 4( ) 1N =ρ ρ  of unit norm are called unit quaternions.  

The unit quaternions ρ  form a 3D hypersphere 3 4( )⊂ R R  . For each quater-

nion 4q  with nonzero norm the following quaternion 

( )

3 34 3 3 3
4 3

4 4 4 4 4 4 3 4 4

3
1 2 3cos sin cos sin

a a a a

α α α µ µ µ α

+
= = = + = + = + =

= + = + + +

q q q q q

r r

q q q
q r r rρ μ

r

μ i j k

 

is an unit quaternion, where 3 2 2 2 3 3 3 4,  / ,  cos / ,b c d aα= + + = =r μ r r q  3 4sin / ,α = r q  
3

1 ,/bµ = r 3
2 / ,cµ = r  3

3 /dµ = r   and 1 2 3 .µ µ µ= + +μ i j k  Obviously, 

( )4 4 43
1 2 3cos sin cos si( , n .)α α α µ µ µγ θ α⋅ ⋅   = + = + + +  q i j kq μ q  

where 3 2( , cos sin cos sin sinγ θ γ γ θ γ θ= + + ∈μ i k Sj , , [0, ],   [ 2  0, )θ ϕ π α π∈ ∈ are 

the polar coordinates on 3. Obviously, 
 ( )4 4cos ,    cos sin ,a b= =q qα γ α  ( )4 sin cos sin ,c = q γ θ α  ( )4 sin sin sin .d γ θ α= q   

 
Fig. 4. Each 3D vector 2 ∈μ   of unit length can play a role of classical imaginary unit. For 

example, the special elements 3 3 3, ,i j k  are such elements. 

In particular, for 4 3
1 1 1 1 1 b c d≡ = + +q r i j k  and 4 3

2 2 2 2 2 2b c d≡ = + +q r i j k  we obtain 
23 3 3 3 3 3 3 2 3 3 3 3 3

1 2 1 2 1 2 ) | ) ,   | , = − + × = = − = − r r r r r r r r r r r r   

and for a pure quaternion 3 2 3∈ ⊂μ R with unity norm 3 1=μ we have 
23 2 3 1,= − = −μ μ  where 2  denotes the unit 2-D sphere in 3-D space 3R . This 

unit-vector product identity represents the generalization of the complex-variable 
identity 2 1i = − . 
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This means that, if in the ordinary theory of complex numbers there are only two 
different square roots of negative unity ( i+  and i− ) and they differ only in their 
signs, then in the quaternion theory there are infinite numbers of different square roots 
of negative unity 

( ) ( )3 3 2( , ) cos sin cos sin sin ,x y zγ θ µ µ µ γ γ θ γ θ= = + + = ⋅ + ⋅ + ⋅ ∈μ μ i j k i j k S
 

which gives 3 2 3 2 ( , ) 1γ θ= = −μ μ . Here ( )3 ( , ) cos ,sin cos ,sin sinγ θ γ γ θ γ θ=μ  being 
still that point on the spherical surface, which has for its rectangular coordinates 
cos ,sin cos ,sin sinγ γ θ γ θ  (see Fig. 4). In the feature we will omit left index: 

3( , ) ( , ).γ θ γ θ≡μ μ  
    Definition 4. A functions 4 ( ) :[0, 1] ( )n N − →f R  are called quaternion-valued 
discrete functions. They have the following form: 

( )4
0 1 2 3 0 1 2 3( ) ( ) ( ) ( ) ( ) ( ), ( ), ( ), ( ) .n f n f n f n f n f n f n f n f n= + + + =f i j k  

The exponential function is 
4 2 4 4

4 4

0
)  1 .... ... .

2! !
  x (

!
e p

m m

mm m

∞

=

= + + + + + =∑q q qq q   

    Theorem 1 [14,15]. For 4 3 ( )a= + ∈q r R  we have 
3

3 3 3 3
3) ) cos ||) exp( exp( (|| (||

|
+ sin ||) .

|||
a aa e e

 
+ = =  

 

rr r r r
r

 

    Obviously, 3|| e p( 1x ) ||=r  and 3 3|| exp( exp() || || ) || .aa e= + =r r In general case 
4 4 4 4

1 2 2 1) )exp( exp( exp( x () )e p≠q q q q  and 4 4 4 4
1 2 1 2exp( exp( exp() ) )+ ≠ ≠q q q q   

4 4
2 1) ).exp( exp(≠ q q  

3. Quaternion Fourier Transforms 

3.1.       Historical remarks 

Before defining the quaternion Fourier transform, we briefly outline its relationship 
with Clifford Fourier transformations.  Quaternions and Clifford hypercomplex num-
ber were first simultaneously and independently applied to quaternion-valued Fourier 
and Clifford-valued Fourier transforms by Labunets [9] and Sommen [10,11], respec-
tively,  at the 1981. The Labunets quaternion transforms were over quaternion with 
real and Galois coefficients (i.e., over [ ]R  and [ ( )]pGF ). They generalize both 
classical and co-called number theoretical transforms (NNTs) and proposed for appli-
cation to fast signal processing. Ernst [12] and Delsuc [13] in the late 1981s, seeming-
ly without knowledge of the earlier works of Labunets and Sommen proposed bicom-
plex Fourier transforms over 4D commutative hypercomplex algebra of bicomplex 
numbers ( ⊕C C ). Note that the bicomplex algebra is quite different from the quater-
nion algebra; among general things, bicomplex multiplication is commutative, but 
quaternion one is noncommutative. For this reason, the Ernst and Delsuc transforms 
are direct sum of ordinary Fourier transforms (i.e., duplex Fourier transform). They 
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are a little bit similar in kind to quaternion Fourier transforms.  Ernst and Delsuc's 
transforms were two-dimensional and proposed for application to nuclear magnetic 
resonance (NMR) imaging. 
    Two new ideas emerged in 1998-1999 in a paper by Labunets [14] and Sangwine 
[15]. These were, firstly, the choice of a general root 3μ  of 1−  (a unit quaternion 
with zero scalar part) rather than a basis unit ( ,i j  or k ) of the quaternion algebra, 
and secondly, the choice of a general roots 3 3 3

0 0 0 0 1 1 1 1 1( , ), ( , ),..., N −= = =μ μ μ μ μγ θ γ θ  

1 1 1( , )N N N− − −= μ γ θ  of  1−  (see cloud of imaginary units on figure 1) in Clifford alge-
bra to create multi-parameter and fractional Fourier-Clifford transforms (with eigen-
values 0 0 0 1 1 1( , ) ( , ), ,...e e− −μ μγ θ γ θ 3

1 1 1( , )..., ,...N N Ne − − −− μ ϕ θ ).   
    Labunets, Rundblad-Ostheimer and Astola [16-18] used the classical and number 
theoretical quaternion Fourier and Fourier-Clifford transforms for fast invariant 
recognition of 2D, 3D  and nD color and hyperspectral images, defined on Euclidean 
and non-Euclidean spaces. These publications give useful interpretation of quaternion 
and Cliffordean Fourier coefficients: they are relative quaternion- or Clifford-valued 
invariants of hyperspectral images with respect to Euclidean and non-Euclidean rota-
tions and motions of physical and hyperspectral spaces. It removes the veil of mysti-
cism and mystery from quaternion- and Clifford-valued Fourier coefficients. In the 
works of scientists F.Brackx, H. De Schepper, F. Sommen, and H. De Bie [19-22] 
mathematical theory of Fourier-Clifford transforms accepted the final completeness, 
beauty and elegance.  
 
3.2.          Quaternion Fourier transforms 

According to Theorem 1, for non-zero α ∈R  and a non-zero 4 3a= +q μ   

( )
3

4 3 3 3
3) ) cos || ) +exp( exp ( (|| (||

|
sin || ) .

|||
aa e αα α αα
 

= + =  
 

μq μ μ μ
μ

 

In particular case, for 4 3 ( , )γ θ≡ =q μ μ  we have ( , ) cos ) + ( , )si( (n ).e γ θ α α γ θ α=μ μ  For 
2 /   ( 0,1,..., 1)k k N k Nα α π= = = −  we obtain quaternion-valued discrete harmonics 

2( , ) 2 2 cos  + ( , )sin ,k k kn knN
k k ke kn kn

N N

πγ θ π π
γ θ   = =    

   

μ
ε μ  

where each quaternion harmonic  ( )exp 2 ( , ) /kn
k k k kn Nπ γ θ− = −ε μ  has its own imagi-

nary unit ( ) 2: ( , ) cos sin cos sin sin ,k k k k k k k kγ θ γ γ θ γ θ= = ⋅ + ⋅ + ⋅ ∈μ μ i j k S   0,1,..., 1k N= − . 
Due to the non-commutative property of quaternion multiplication, there are two dif-
ferent types of quaternion Fourier transforms (QFTs).   
These QFTs are the left- and right-sided QFTs (LS-QFT and RS-QFT), respectively. 
     Definition 4. The direct discrete quaternion Fourier transforms of  

( ) :[0, 1] ( )n N − →f R  are defined as 

( ) { }
21 1( , )4 ( , ) 4 4 4

0 0

1 1, ( ) ( ) ( ),k k
N Nkn knN

k k k
n n

k Q n e n n
N N

πγ θ
γ θ

− −− −

= =

= = =∑ ∑
μγ θQF f f ε f        (1) 
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( ) { }
21 1( , )4 ( , ) 4 4 4

0 0

1 1, ( ) ( ) ( ) ,k k
N Nkn knN

k k k
n n

k Q n n e n
N N

πγ θ
ϕ θ

− −− −

= =

= = =∑ ∑
μφ θFQ f f f ε         (2) 

where ,  Q Q   are LS-QFT and RS-QFT, 0 1 1 0 1 1( , ,..., ),  ( , ,..., ).N Nγ γ γ θ θ θ− −= =γ θ   
     Definition 5. The inverse quaternion Fourier transforms are defined as 

[ ] ( )
1

4 4

0

( , )1( ) 2 , ,
( , ) ( , )

N
knk k
k k k

k k k k k L

n k
N

γ θ
γ θ

γ θ γ θ

−

= − −

=
+∑ μf ε QF

μ μ
 

          (3) 

 

( ) [ ]
1

4 4

0

( , )1( ) 2 , .
( , ) ( , )

N
kn k k

k k k
k k k k k R

n k
N

γ θ
γ θ

γ θ γ θ

−

= − −

=
+∑ μf QF ε

μ μ
 

            (4) 

 
We see, that ( , )Q Q= γ θ   and ( , )= γ θ  depend on 2N  parameters ( ), ,k kγ θ  

{ } 0,1,..., 1k N∈ − . 

4. Classical fractional and many-parameter Fourier transforms 

With most of the data transmission systems nowadays use orthogonal frequency divi-
sion multiplexing telecommunication system (OFDM-TCS) based on the discrete 
Fourier transform. It is a unitary operator 

12 /

, 1

Nj kn N

k n
e

−π

=
 =    :  ( )( ) ( )F k f k=  .     

Relevant properties are that the square ( )2 ( ) ( )f n f n=


   is the inversion operator 

modulo N , and that its fourth power ( )4 ( ) ( )f n f n= , is the identity; hence 
3 1.−=   The operator   thus generates the cyclic Fourier group of order 4: 

{ } { } { }1 2 3
4 0,1,2,3
( ) , , ,a

a
I

∈
= =Gr      . The idea of fractional powers of the Fourier 

operator   appears in the mathematical literature [23-31]. This idea is to consider 
the eigenvalue decomposition of the Fourier ( )N N× –matrix  

( ) ( ) ( ) ( )

( ){ }

1 1
2 / 2 / 4

0 0

1 1
0 -1diag , , Λ ,

N N
j kn N js

s s s s s
s s

N

e h k h n e h k h n
− −

π π

= =

− −

    = = λ = =        

= λ … λ =

∑ ∑

U U U U

 
    (5) 

where 2 / 4j s s
s e jπλ = =  and ( )lh n  are eigenvalues and eigenfunctions  in the form of 

the discrete Hermite functions, ( )sh k  and  ( )sh n  are vector-column and vector-

row, respectively,  ( ) ( ) ( )0 1 1, ,..., Nh k h k h k− =  U  is the matrix of eigenvectors. 

        The continuously family of FrFT { }
[0,4)

a

a∈
  is constructed by replacing the s -th 

eigen-value 2 / 4j s
s e πλ =  by its a -th power 2 / 4a jsa

s e πλ = , for a  between 0 and 4, or 
/ 2jsa js

s e eα π αλ = =  for α  between 0 and 2π , where / 2aα = π . 
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The eigenvalues of the standard DFT matrix N  are the fourth roots of unity, to be 

denoted by { } { }32 / 4

0
1,j s

s s
e jπ

=
λ ∈ ∈ ± ± . This divides the space of N-point complex 

signals into four Fourier invariant subspaces whose dimensions sN  are the multiplici-
ties of the eigenvalues sλ , which have a modulo 4 recurrence in the dimension 

2 4NN M= =  given by 0 11, 1,N M N M= + = − 2 ,N M= 3 .N M= Let a function 
( ) :{0,1,2,..., N 1} {0,1,2,3}s n − →  describes of the distribution of eigenvalues along main 

diagonal ( ) ( )( ) / 2 ( )j s n a js ne eπ α=Diag Diag . This function takes 1M +  times value 0, 

1M −  times value 1, and M  times values 2 and 3.  
Definition 6. [23-31]. The discrete classical fractional Fourier transform are de-

fined as 

( ){ } ( ) ( )
1

( ) ( ) 1 ( )

0
( ) : ,

N
js m js m

k m m
m

e n e e h k h n
−

α α α − α

=

 = = =  ∑U Diag U    (6) 

and if ( )s m m=  then we obtain the Bargmann fractional Fourier transform [26] 

( ){ }
1

( ) 1

0
( ) : ( ) ( ) ,

N
jm jm

k m m
m

be n e e h k h n
−

α α α − α

=

 = = =  ∑U Diag U     (7) 

The identical and classical Fourier transformations are both the special cases of the 
FrFTs. They correspond to 0α =  ( 0 I= ) and / 2α = π  ( / 2π =  ), respectively.  

Definition 7. The discrete classical-like and Bargmann-like ( ( )s m m= ) many-
parameter DFT we define by the following way 

( ) ( ){ }0 1 1
1

, ,, , ( ) ( )( ) 1

0
diag ( ) ( ) ,N m m

N
js m js m

m m
m

e e h k h n−

−
α α …α α α−

=

= = =∑α U U      (8) 

where ( )0 1 1, , , N−= α α … αα . 

5. Fractional and many-parameter quaternion Fourier 
transforms 

If quaternion harmonics have equivalent imaginary units 3 3( , ) ( , ),k kγ θ γ θ≡μ μ  
0,1,..., 1k N∀ = − ), then quaternion Fourier matrices ,Q Q   contains commutative 

entries 
3 2( , )k k kn

Ne
πγ θ− μ

. For this reason Q  and  Q  have the same real-valued eigen-
function as ordinary DFT but with quaternion-valued eigenvalues 

{ } { }3 3 32 ( , ) / 4 3

00
 ( , ) .s s

ss
e π γ θ γ θ⋅

==
=μ μ  Therefore,  

( ) ( ) ( ) ( )3
2 1 1( , ) 2 ( , ) / 4 3

0 0
( , )

N Nkn s sN
s s s s

s s
e e h k h n h k h n

π − −− γ θ π⋅ γ θ

= =

     = = γ θ     
    
∑ ∑

μ μ μ  
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where { } 1

0
( ) N

s s
h n −

=   
is the set of discrete real-valued Hermite functions. Hence, we can 

define fractional and manyparameter quaternion Fourier transforms. 
Definition 8. For single parameter 1

2πα∈Tor  we introduce fractional quaternion 
Fourier transforms (FrQFT) of classical and Bargmann ( ( )s m m= ) structures as 

( ) ( ) ( )3 3
1

( , ) ( ) ( , ) ( ) 1

0
( , ) .m m m m

N
s m s m

m m
m

e h k h n e
−

γ θ ⋅ ⋅α ⋅ γ θ ⋅ ⋅αα −

=

 = = ⋅ ⋅ 
 
∑ μ μγ θ U Diag U    (9) 

Definition 9. For N-parameter ( )0 1 2, , N
N− πα … α ∈Tor   we introduce many-parameter 

quaternion Fourier transforms (MPQFT) of classical and Bargmann structures as 

( ) ( ) ( )3 3
1

( , ) ( ) ( , ) ( ) 1

0
( , ) ,m m m m m m

N
s m s m

m m
m

e h k h n e
−

γ θ ⋅ ⋅α γ θ ⋅ ⋅α −

=

 = = ⋅ ⋅ 
 
∑ μ μα γ θ U Diag U   (10) 

where 0 1 1( , ,..., ),Nβ β β −=γ  0 1 1( , ,..., ),Nθ θ θ −=θ  0 1 1( , ,..., ).Nα α α −=α  Obviously, they 
are 3N -parameter transforms. 

Due to the non-commutative property of quaternion multiplication, there are left- 
and right-sided transforms (LS-FrQFTs, LS-MPQFTs and RS-FrQFTs, RS-MPQFTs). 

Definition 10. The direct discrete LS-FrQFTs, LS-MPQFTs and RS-FrQFTs, RS-
MPQFTs of ( ) :[0, 1] ( )n N − →f R  are defined as 

( ) ( )
( ) ( )

3

3

1
( , ) ( )

0
1

( , ) ( )

0

, ( , ) ( ) ( ) ( ) | ( ) ,

, ( , ) ( ) ( ) | ( ) ( ) ,

m m m

m m m

N
s m

m m
m
N

s m
m m

m

k Q n e h k h n n

k Q n h n n e h k

γ θ αα α

γ θ αα α

−
⋅ ⋅

=

−
⋅ ⋅

=

= =

= =

∑

∑

μ

μ

QF γ θ γ θ f f

FQ γ θ γ θ f f








   (11) 

( )

( )

3

3

1
( , ) ( )

0
1

( , ) ( )

0

, ( , ) ( ) ( ) ( ) | ( ) ,

, ( , ) ( ) ( ) | ( ) ( ) ,

m m m m

m m m m

N
s m

m m
m
N

s m
m m

m

k Q n e h k h n n

k Q n h n n e h k

γ θ α

γ θ α

−
⋅ ⋅

=

−
⋅ ⋅

=

= =

= =

∑

∑

μα α

μα α

QF γ θ γ θ f f

FQ γ θ γ θ f f








     (12) 

6. Anti-eavesdropping: Bob & Alice vs. Eve 

The system model that is going to be used in this work is known as the wiretap 
channel model, that was introduced by Schannon [32] and Wyner [33] (see Fig.5).  
This model is composed of two legitimate users, named Alice and Bob, while the 
passive eavesdropper named Eve attempts to eavesdrop the information. A legitimate 
user (Alice) transmits her confidential messages to a legitimate receiver (Bob), while 
Eve is trying to eavesdrop Alice’s information. We suppose that the eavesdropper 
knows the frame of OFDM signal of the legitimate Intel-OFDM-TCS (i.e. knows 
initial values of parameters ( )0 0 0 0

0 1, , , qϕ ϕ ϕ= …θ  at the time 0t ) and has the capability 

to demodulate OFDM signals. Hence, the legitimate transmitter/receiver (Alice/Bob) 
and eavesdropper (Eva) use identical parameters of Intel-OFDM-TCS which remain 
constant over several time slots. 
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Fig. 5. Eavesdropping attack. 

 
Alice transmits her data using OFDM with N  quaternion-valued sub-carriers 

( ){ } 10

0
|

N

k k
n

−

=
qsubc θ , i.e., she uses the quaternion transform  

00 0( )N ≡ b θ    with 

fixed keys  ( )0 0 0 0
0 1, , , qϕ ϕ ϕ= …θ , 0

1 2( , ,..., )Nb b b=b . When sub-carriers (i.e. unitary 

transform
0 0( )b θ ) of Alice and Bob Intelligent-OFDM-TCS are identified by Eva, 

this TCS can be eavesdropped by means of radio-electronic eavesdropping attack. In 
this scenario, Bob and Eve will have the same instruments to decode the received 
message. This means that Eve successful intercepts Alice’s message. As an anti-
eavesdropping measure Alice and Bob can use the following strategy: they select new 
sub-carriers in Int-OFDM-TCS by changing parameters of 

0 0( )b θ  in the periodi-
cal (or random) manner (a priory known for Alice and Bob).  

For comparative analysis we use OFDM-TCS, based on one-parameter classical 
( , ) ( )α α≡β θ i   and many-parameter Bargmann ( )α i quaternion Fourier 

transforms in its one-parameter forms 

( ) ( ) ( ) ( )
1 1

( )

0 0
 ( ) ,   ( ) ,

N N
s m m

m m m m
m m

e h k h n e h k h n
− −

α ⋅ ⋅α α ⋅ ⋅α

= =

   = =   
   
∑ ∑i ii i     

where { } 1

0
( ) N

s s
h n −

=   
is the set of discrete real-valued Hermite functions, 

3 ( , ) ,p p p
r r rβ θ ≡μ i 1, 2,.., ;  0,1,..., 255r n p∀ = ∀ =  for both transforms.  

     Simulations were done in MATLAB R2018b. Intelligent OFDM-TCS’s parame-
ters are assumed as follows: 256-QAM modulation, the sizes of ( )α i  and 

( )α i  are 256 256x (i.e., the number of quaternion-valued subcarriers is 256), 
every time-slot (OFDM-symbols) is a row from grey-level (256 256)× -image “Le-
na”, the number of time-slot equal to 256   (i.e. equal to the number of “Lena” rows). 
The length of bit-stream of a single time-slot is equal to 8 256 2048× = . Data of 
2048  bits are sent in the form of 256 8 -bit symbols (one symbol is of 8 bits).  

Now, we provide some simulation results to substantiate our theoretical claims for 
( )a i  and ( )a i  with the following values of parameter 

{ }(0) 1, 0.8, 0.6, 0.4, 0.2,0 .a = − − − − −  If Eve knows these parameters then she receives the 
same message as Bob. In order to protect the corporate privacy and the sensitive client 
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information against the threat of electronic eavesdropping Alice and Bob use de-
scribed above defense mechanism.  

 

 

     
 

Fig. 6. The average a) MSD , b) BER  and c) SER  measurements versus a  for ( )a i  

with different values of parameter 0a : 0 1 (blue curve),a = −  0 0.5 (red curve),a = −  
0 0 (green curve)a = . When parameters in transmitter (Alice) and receiver (Eva) are the 

same ( 0a a= ), we have 0=MSD , 0=BER  and 0=SER .  

It would be interesting to know how MSD, BER and SER are changing with re-
spect to deviation 1a  from initial value 0a . The transmission performances of OFDM 
system are evaluated by average MSD, BER and SER measurements under 256 time-
slot. Fig. 6 show the average 

( ) [ ] ( ) [ ] ( ) [ ]
255 255

| 0 | 0
0 0

1 ,  | | ,|
256

Bit Bit
A B A B

l l
a a ll a l aξ ξ→ = → =

= =

= =∑ ∑BER BEMSD RMSD  

( ) [ ] ( ) [ ]
255

| 0 | 0
0

| |Sym Sym
A E A E

l
l a l aξ ξ→ = → =

=

=∑SER SER  

measurements versus ia  in noiseless case for ( )a i  in the absence of thermal noise 
( 0ξ = ) for some types of ( )a i (plotted with different color). When parameters in 

http://context.reverso.net/%D0%BF%D0%B5%D1%80%D0%B5%D0%B2%D0%BE%D0%B4/%D0%B0%D0%BD%D0%B3%D0%BB%D0%B8%D0%B9%D1%81%D0%BA%D0%B8%D0%B9-%D1%80%D1%83%D1%81%D1%81%D0%BA%D0%B8%D0%B9/electronic+eavesdropping
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Alice’s and Eva’s OFDM-TCS are the same, we have 0=MSD , 0=BER  and 
0=SER . This means that Eve successful intercepts Alice’s messages.  

The changing of parameter a  allows to escape eavesdropping. Indeed, all graphics 
have V -like form. It means, that if Alice and Bob change working value of the pa-
rameter a  ( 0a a→ ), but Eve use previous value  0a , then Eve will receive Alice’s 
massage with big mistakes.  To illustrate this result, we consider the image “Lena” as 
Eva`s message. Fig. 7 shows received Eva`s message with different values of a  in 
the Alice`s OFDM-TCS, when Eva works with classical DFT. 

   
                        a)                                      b)                                    c) 

   
                       d)                                      e)                                    f) 
Fig. 7. Received Eva`s messages with different values of parameter a  in Alice`s OFMD-TCS. 
Eva continues to work with classical FFT ( 0 1a = − ). Alice uses ( )a i  with new value of 
parameter a : a) 1,a = − b) 0.8,a = − 0.8,a = − c) 0.6,a = − d) 0.4,a = − e) 0.2,a = − f) 0.a =  

 
Similar results we have for OFDM-TCS, based on quaternion Bargmann-Fourier 
transform ( ).a i   

7. Conclusions 

In this paper, we have shown a new unified approach to the many-parametric repre-
sentation of complex and quaternion Fourier transforms. Defined representation of 
many-parameter quaternion Fourier transforms (MPQFTs) depend on finite set of free 
parameters, which could be changed independently of one another. For each fixed 
values of parameter we get the unique orthogonal transform. We develop novel Intel-
ligent OFDM-telecommunication systems based on fractional and multi-parameter 
Fourier transforms and shown their superiority and practicability from the physical 
layer security. The new systems use inverse MPQFT (IMPQFT) for modulation at the 
transmitter and direct MPFQT (DMPFQT) for demodulation at the receiver. Simula-
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tion results show that the proposed Intelligent OFDM-TCS have better performance 
than the conventional OFDM system based on DFT against eavesdropping. 
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