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Abstract. In this paper, we aim to investigate the superiority and practicability of many-

parameter transforms (MPTs) from the physical layer security (PHY-LS) perspective. We 

propose novel Intelligent OFDM-telecommunication systems based on complex and 

quaternion MPTs. The new systems use inverse MPT (IMPT) for modulation at the 

transmitter and MPT for demodulation at the receiver. The purpose of employing the MPT 

is to improve:  1) the PHY-LS of wireless transmissions against to the wide-band anti-

jamming and anti-eavesdropping communication; 2) the bit error rate (BER) performance with 

respect to the conventional OFDM-TCS; 3) the peak to average power ratio (PAPR). Each 

MPT depends on finite set of independent parameters (angles). When parameters are changed, 

many-parametric transform is also changed taking form of a set known (and unknown) 

orthogonal (or unitary) transforms. For this reason, the concrete values of parameters are 

specific “key” for entry into OFDM-TCS. Vector of parameters belong to multi-dimension 

torus space. Scanning of this space for find out the “key” (the concrete values of 

parameters) is hard problem. MPT has the form of the product of the Jacobi rotation matrixes 

and it describes a fast algorithm for MPT. The main advantage of using MPT in OFDM TCS is 

that it is a very flexible anti-eavesdropping and anti-jamming Intelligent OFDM TCS. To the 

best of our knowledge, this is the first work that utilizes the MPT theory to facilitate 

the PHY-LS through parameterization of unitary transforms. 

1. Introduction

In today’s world, an important aspect of communication and technology is security. Wars are being

fought in the virtual world rather than in the real world. There is a rapid increase in cyber warfare.

Ensuring information security is of paramount importance for wireless communications. Due to the

broadcast nature of radio propagation, any receiver within the cover range can listen and analyze the

transmission without being detected, which makes wireless networks vulnerable to eavesdropping and

jamming attacks. Orthogonal Frequency-Division Multiplexing (OFDM) has been widely employed in

modern wireless communications networks. Unfortunately, conventional OFDM signals are

vulnerable to malicious eavesdropping and jamming attacks due to their distinct time and frequency

characteristics. The communication that happens between the two legitimate agents needs to be

authorized, authentic and secured. Hence, in order to design a secured communication, we need a

secret key that can be used to encode the data in order to be prevented from phishing. Therefore, there

is a need to generate a secret key with the existing information available. This key should not be

shared, as the wireless channel remains vulnerable to attack. So, the key should be generated by

communicating legitimate agents. Traditionally, cryptographic algorithms/protocols implemented at

upper layers of the open systems interconnection (OSI) protocol stack, have been widely used to

prevent information disclosure to unauthorized users [1]. However, the layered design architecture

with transparent physical layer leads to a loss in security functionality [2], especially for wireless

communication scenarios where a common physical medium is always shared by legitimate and non-
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legitimate users. Moreover, the cryptographic protocols can only offer a computational security [3]. 

As an alternative, exploiting physical layer characteristics for secure transmission has become 

an emerging hot topic in wireless communications [4]–[7]. The pioneering work by Wyner in 

[4] introduced the concept of “secrecy capacity” as a metric for PHY-layer security (PHY-LS). 

It is pointed out that perfect security is in fact possible without the aid of an encryption keys 

when the source-eavesdropper channel is a degraded version of the source-destination (main) channel 

[4]. 

  As the physical-layer transmission adversaries can blindly estimate parameters of OFDM 

signals, traditional upper-layer security mechanisms cannot completely address security threats in 

wireless OFDM systems. Physical layer security, which targets communications security at the 

physical layer, is emerging as an effective complement to traditional security strategies in securing 

wireless OFDM transmission [8]. The physical layer security of OFDM systems over 

wireless channels was investigated from an information-theoretic perspective in [8].  

   Based on the theoretical secrecy capacity study, several OFDM security techniques have 

been proposed. A secure OFDM system was investigated by degrading the eavesdropper’s 

channel condition, where distributed transmitters independently sent out pre-equalized OFDM 

signals [9]. Power and sub-carrier allocation schemes in OFDM systems subject to the power 

and security constraints were reported in [10]. Moreover, transmit beam forming [11] and artificial 

noise [12] can be adopted to improve the security of OFDM-based transmission. However, these 

secretive capacities based security techniques usually require the knowledge of the 

eavesdropping channel, which is conditioned on a successful detection of eavesdroppers.  

These serious drawbacks make OFDM a less than ideal technique for high data rate 

communications over secret and military channels (SC and MC). These channels are characterized 

by both deliberate noise and strong impulsive noise. Therefore, alternative MCMs should be 

considered for SCs (MCs) and compared to conventional OFDM.  

  In this paper, we propose a simple and effective anti-eavesdropping and anti-jamming 

Intelligent OFDM system, based on many-parameter transforms (MPTs). In this paper, we aim to 

investigate the superiority and practicability of many-parameter transforms (MPTs) [13]-[17] from 

the physical layer security (PHY-LS) perspective.  
We propose novel Intelligent OFDM-telecommunication systems based on MPT 

1 22
( , ,..., )n q   . 

   MPT has the form of the product of the sparse Jacobi rotation matrixes and it describes a 

fast algorithm for MPT. The main advantage of using MPT in OFDM TCS is that it is a very flexible 

anti-eavesdropping and anti-jamming Intelligent OFDM TCS. To the best of our knowledge, this is 

the first work that utilizes the MPT theory to facilitate the PHY-LS through parameterization 

of unitary transforms. 

The purposes of employing the MPT: 

 is studied the influence of parameters 1 2, ,..., q   on the transmission performances of

OFDM-TCS,

 is to improve the PHY-LS of wireless transmissions against to the wide-band anti-jamming

and anti- eavesdropping communication.

 is to minimized the peak to average power ratio (PAPR), the bit error rate (BER) and symbol

error rate (SER) performances with respect to the conventional OFDM-TCS, based on fast

Fourier transform (FFT),

 is to minimize inter-symbol interference (ISI) by chaining of parameters.

Each MPT 
1 22

[ , ,..., ]n q   depends on finite set of independent Jacobi angles 1 2, ,..., q   , which 

could be changed independently of one another. When parameters are changed, sub-carriers, 

corresponding to multi-parametric transform, are also changed taking form of all known (and 

unknown) orthogonal sub-carriers that transmit useful information. For this reason, the concrete values 

of parameters 
0 0 0

1 1 2 2, ,..., q q        are specific “key” for entry into OFDM-TCS. Vector

1 2( , ,..., )q   of parameters belong to q -D torus space [0,2 )q . For (2 2 )n n -MPT 1 22
[ , ,..., ]n q   q
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is equals to 1( 2 )nn  . If, for example, if 10n   ( 102 1024 ), then the torus [0,2 )q will have

dimension 910 2 5120   (it is not 1-D radio frequency axis in the Fourier analyses!).Scanning of the 

space 5120[0,2 )  for find out the “key” (the concrete values of parameters 
0 0 0

1 1 2 2, ,..., q q        ) 

is a hard problem. The process of generating a “key” (parameters) of MPT can be more efficient in 

terms of providing security as compared to RSS based technique. Our implementation contains three 

agents: two legitimate agents Alice and Bob who want to communicate with each other. An 

illegitimate agent (stated as Eve) tries to listen to Alice’s and Bob’s OFDM-TCS and try to find out 

the “key” so that she can 1) to eavesdrop the confidential information, or 2) break the communication 

between them by Jamming. Jamming in wireless OFDM-networks is defined as the disruption of 

existing wireless communications by decreasing the signal-to-noise ratio at receiver sides through the 

transmission of interfering wireless signals. 

The paper are organized as follows. Section 2 of the paper presents a brief introduction to the 

conventional OFDM system along with various notations used in the paper. Section 3 presents novel 

Intelligent-OFDM-TCS based on many-parameter complex 
1 22

( , ,..., )n q    or quaternion 

1 22
( , ,..., )n q   transforms. On the next parts of our work we do study of Intelligent 

1 22
[ , ,..., ]n q   -OFDM-TCS to find out optimal values of parameters optimized PARP, BER, SER, 

anti-eavesdropping and anti-jamming effects. 

2. The conventional OFDM

Most of the data transmission systems nowadays use orthogonal frequency division multiplexing

telecommunication system (OFDM-TCS) based on the discrete Fourier transform (DFT). Some

versions of it is: digital audio broadcast (DAB), digital video broadcast (DVB), and wireless local area

network (WLAN), standards such as IEEE802.11g and long term evolution (LTE and its extension

LTE- Advanced, Wi-Fi (IEEE 802.11), worldwide interoperability for microwave ACCESS (WiMAX

IEEE 802.16) or ADSL [15]. The concept of using parallel data broadcast by means of frequency

division multiplexing (FDM) was printed in mid 60s [16].

The conventional OFDM is a multi-carrier modulation technique that is basic technology having high-

speed transmission capability with bandwidth efficiency and robust performance in multipath fading

environments. OFDM divides the available spectrum into a number of parallel orthogonal sub-carriers

and each sub-carrier is then modulated by a low rate data stream at different carrier frequency. In

OFDM system, the modulation and demodulation can be applied easily by means of inverse and direct

discrete Fourier transforms (DFT). The conventional OFDM will be denoted by the symbol

- .N OFDM Conventional OFDM-TCS makes use of signal orthogonality of the multiple sub-carriers 

2 /j kn Ne  (discrete complex exponential harmonics). All sub-carriers     
11 2 /

0 0
( )

NN j kn N

k k k
n e

 

 
subc  form 

matrix of discrete orthogonal Fourier transform  
11 2 /

, 0 , 0
( ) .

NN j kn N

N k k n k n
n e



 
    subc   At the time, the

idea of using the fast algorithm of different orthogonal transforms  
1

, 0
( )

N

N k k n
n




 subc  for a software-

based implementation of the OFDM’s modulator and demodulator, transformed this technique from an 

attractive. OFDM-TCS, based on arbitrary orthogonal (unitary) transform N will be denoted as 

- .N OFDM The idea which links -N OFDM and -N OFDM is that, in the same manner that the 

complex exponentials  
1

2 /

0

N
j kn N

k
e





are orthogonal to each-other, the members of a family of N -sub-

carriers  
1

0
( )

N

k k
n




subc (rows of the matrix N ) will satisfy the same property. 

The -N OFDM reshapes the multi-carrier transmission concept, by using carriers  
1

0
( )

N

k k
n




subc

instead of OFDM’s complex exponentials  
1

2 /

0

N
j kn N

k
e





. There are a number of candidates for 

orthogonal function sets used in the OFDM-TCS: discrete wavelet sub-carriers [17]-[18], Golay 
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complementary sequences [19]-[23], rectangle pulses [17], Walsh functions [24]-[26], pseudo random 

sequences [27]. 

3. The intelligent OFDM

Intelligent-OFDM TCS can be described as a dynamically reconfigurable TCS that can 

adaptively regulate its internal parameters as a response to changes in the surrounding environment. 

One of the most important capacities of Intelligent OFDM systems is their capability to optimally 

adapt their operating parameters based on observations and previous experiences. There are 

several possible approaches towards realizing such intelligent capabilities. In this work, we aim 

to investigate the superiority and practicability of many-parameter transforms (MPTs) from the 

physical layer security (PHY-LS) perspective.  

   In this work, we propose a simple and effective anti-eavesdropping and anti-jamming 

Intelligent OFDM system, based on many-parameter transform. In our Intelligent-OFDM-TCS we 

use complex 

1 2( , ,..., )N q    or quaternion 1 2( , ,..., )N q   MPTs instead of DFT N . Each MPT depends on 

finite set of independent Jacobi angles 1 2( , ,..., )qθ    , which could be changed in dependently of 

one another. When parameters are changed, multi-parametric transform is changed too taking form of 

known (and unknown) orthogonal transforms. MPT ( )N θ (and ( )N θ ) has the form of the product 

of the sparse Jacoby rotation matrixes and which describes a fast algorithm for this transform. The

main advantage of using MPT in OFDM TCS is that it is a very flexible anti-eavesdropping and anti-

jamming Intelligent OFDM TCS. To the best of our knowledge, this is the first work that utilizes the

MPT theory to facilitate the PHY-LS through parameterization of unitary transforms.

We do study of Intelligent ( )N θ -OFDM-TCS to find out optimal values of parameters optimized

PARP,BER, SER, anti-eavesdropping and anti-jamming effects (see next parts of our work).For 

simplicity, we consider a single-input single-output OFDM setup with N sub-carriers (see figure. 1). 

Figure 1. Block diagram of Intelligent OFDM-TCS. 

Let 

    
    

0 1 1

0 1 1

, ,...,( )

0 1 1

, ,...,( ) 4

0 1 1

2 - , ,..., {0,1} ,

2 - ( ) , ,..., {0,1}

d

d

b b bd d

d

b b bd d

d

Z Z b b b

b b b









    

    

b

b

CD С b

CDQ Q Q R b  

be two constellation diagrams (CD and QCD) on the complex plane С  and  on the quaternion algebra 
4 ( )R consisting of 2d complex 

 0 1 1, ,..., db b b
Z   and quaternion  0 1 1, ,..., db b b Q  points (stars) and numbered 

by binary d -digital numbers  0 1 1, ,..., {0,1} .d

db b b  b Here 0,1
d
is d -D Boolean cube. There are 

several types of QCD: 
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1) In the form of a 4D array in 4 ( )R  

    0 1 1, ,...,( ) 4

0 1 12 - ( ) , ,..., {0,1}db b bd d

db b b

    b
QCD Q Q R b  

2) In the form of tensor product of pair of  complex constellation diagrams 

    
    

1 1 1
1

0 1 / 2 1

2 2 22
0 1 / 2 1

, ,...,/ 2 ( ) 1 1 1 1 / 2

1 0 1 / 2 1

, ,...,/ 2 ( ) 2 2 2 2 / 2

2 0 1 / 2 1

2 -    , ,..., {0,1} ,

2 - , ,..., {0,1} :

d

d

b b bd d

d

b b bd d

d

b b b

b b b









    

    

b

b

CCD z z C b

CCD w w C b

 

    
1 2 1 2

0 1 1

/ 2 / 2

, ,...,( ) ( ) ( , ) ( )

0 1 1

2 - (2 - ) (2 - )

( , ) , ,..., {0,1} .d

d d d

b b b d

db b b



  

      b b b b b

CD CCD CCD

z w Q Q Q C b

Q
 

We interpret  0 1 1, ,..., db b b b
 
as an address of  star  0 1 1, ,..., db b b

Z   (or  0 1 1, ,..., db b b Q ) in computer memory. 

Let us introduce the following designations 

        

        

0 1 1 0 1 1

0 1 1 0 1 1

, ,..., , ,...,1

0 1 1 0 1 1

, ,..., , ,...,1

0 1 1 0 1 1

, ,..., 2 - ,          , ,..., {0,1} ,

, ,..., 2 - ,   , ,..., {0,1} ,

d d

d d

b b b b b bd d

d d

b b b b b bd d

d d

b b b Z Z b b b

b b b b b b

 

 



 



 

    

    

CM CD b CM

QCM Q CD b QCM QQ
 

where CM , QCM , 1
CM ,

1
QCM are complex and quaternion constellation direct and inverse 

mappings. 

The principle of any OFDM system is to split the input 1-bit stream  ,  0,1,2,... b m m  into d -bit 

stream (
2

d
B -valued stream):      0 1[ ] [ ],..., [ ],..., [ ]r db m b nd r n b n b n b n   b , where

2 {0,1}d d b B ,  

m nd r  , 0,1,..., 1r d   and 0,1,2... .n   Here m  is the real discrete time, n  is the “time” for d -

bit stream ( )nb  (i.e., the d -decimation “time” with respect to real discrete time). The 
2

d
B -valued 

sequence ( )nb  
is split into N  sub-sequences (sub-streams) 

    0 1[ ] [ ] [ ],..., [ ],..., [ ] ,k Nn lN k l l l l   b b B b b b  (1) 

where n lN k  , 0,1,..., 1k N   and 0,1,2...l  .  

The row-vector  0 1 1[ ] [ ], [ ],..., [ ],..., [ ]k Nl l l l lB b b b b  is called the thl {0,1}d -valued time-slot. 

Here l  is the “time” for time-slot [ ]lB  (i.e., the N -decimation “time” with respect to d -bit stream 

“time” n  and Nd -decimation “time” with respect to real discrete time m ). 

The data of the thl  time-slot [ ]lB
 
is first being processed by a constellation mapping (CM). 

Various CMs could generally be employed. For example, such CM as QPSK, BPSK (also with their 

differential form) and QAM with several different signal constellations are used to map 2

d
B -valued 

data to appropriate complex- or quaternion-valued symbols 

   ( [ ]) 4 ( [ ])[ ] [ ] ,   [ ] [ ] ,
k kk l k k l k

k kl Z l l l   b b
b CM b b Q QCM b  

where 0,1,..., 1,k N   i.e., 

 

 

 

 

 

 

0 0

1 1

0 ( [ ]) 0 4 ( [ ])

0 0

( [ ]) 4 ( [ ])( [ ]) 4 ( [ ])

1 1( [ ]) 4 ( [ ])

1 1

[ ] [ ]

 ,   [ ] [ ]

[ ] [ ]

k k

N N

l l

l lk kl l

k k

N Nl l

N N

l Z l

l lZ

l lZ
  

 

     
    
    
    

       
    
    
    

    

b b

B Bb b

b b

CM b QCM b Q

Z QCM b QCM b Q

CM b QCM b Q

.   


 
 
 
 
 
 
 
 

      (2) 
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Complex numbers ( [ ])k l

kZ b

 
and quaternions 4 ( [ ])  ( 0,1,..., 1)

k l

k k N b
Q

 
are called data symbols. These 

symbols are then input into the inverse MPT ( 1( )N


θ - or 1( )N


θ  

block). The output of MPT is the 

sum of the information signals in the discrete time domain as follows: 
0 0

1

( [ ]) 4 ( [ ])( [ ]) 4 ( [ ])

0 00 0

4 ( [ ]) 1 4 ( [ ]) 1( [ ]) 4 ( [ ])( [ ])

( [ ]) 4 ( [ ])( [ ])

1 11

 = ( ) ,    = ( )
k

N

l ll l

l ll ll
N Nkv v

l ll

N NN

z Z

z z Z

z Z


 

 

    
    
    
     
    
    
    
        

B Bb b

B BB Bb

B Bb

q Q

θ q θq

q
1

4 ( [ ])

4 ( [ ])

1

.
k

N

l

k

l

N





 
 
 
 
 
 
 
  

b

b

Q

Q

      (3) 

The sequences of coefficients  ( [ ]) ( [ ]) ( [ ])

0 1( ),..., ( ),..., ( )l l l

v Nz z z 

B B B
θ θ θ

 
or 4 ( [ ]) 4 ( [ ]) 4 ( [ ])

0 1,..., ,...,l l l

v N 

B B B
q q q

 
can be 

conveniently visualized as a discrete composite complex- or quaternion-valued signals to be 

transmitted. They are sums of modulated complex-valued ( | )k vsubc θ  or quaternion-valued 

( | )k vqsubc θ  sub-carriers:  
1 1

( [ ]) ( [ ]) ( [ ]) ( [ ])

0 0

( ) ( | ),   ( ) ( | ),
k k

N N
l l l l

v k k v k k

k k

z Z v q Q v
 

 

    B b B b
θ subc θ θ qsubc θ  

where N  is the number of sub-carriers. All sub-carriers
 
transmit dN  data bits.  

As we see in digital Intelligent-OFDM TCS, many-parameter sub-carriers are used to carry the digital 

complex data  
1

( [ ])

0

k N
l

k
k

Z




b

 
or quaternion data  

1
( [ ])

0

k N
l

k
k

Q




b . By this reason, all coefficients 

( [ ]) ( [ ]) ( [ ])

0 1( ),..., ( ),..., ( )l l l

v Nz z z 

B B B
θ θ θ  

(and ( [ ]) ( [ ]) ( [ ])

0 1( ),..., ( ),..., ( )l l l

v Nq q q 

B B B
θ θ θ ) depend on parameters 

1( ,..., )q  θ . This dependence can be used for multiple purposes such as, anti-eavesdropping and 

anti-jamming in order to increase the system secrecy. Every quaternion q  is represented as a pair of 

complex numbers 1 2 1 2( ) ( ) ( , ),q a bi cj dk a bi c di j z z j z z            where 1 ,z a bi   

2 .z c di   Hence, ( [ ]) ( )lB
q θ

 
 can be represented as complex-valued data of double length: 

( [ ]) ( [ ]) ( [ ])

1 2( ) ( ), ( )l l lB B B
q θ z θ z θ . Let 

( [ ])

( [ ])

( [ ]) ( [ ])

1 2

( ) , for complex OFDM,
( )

( ), ( ) , for quaternion OFDM.

l

l

l l




 


B

B

B B

z θ
s θ

z θ z θ
 

Digital data ( [ ]) ( )lB
s θ

 
 is interpolated by digital-to-analog converter  

DAC
( [ ]) ( [ ])( )  ( | ),l ls t
B B

s θ θ  

 [0, ]t T  in generating the analog signal ( [ ]) ( | )ls tB
θ . 

The peak to average power ratio (PAPR) for 
thl time-slot is defined as 

 

( [ ])

{0, ]

2
( [ ])

0

max ( | )
[ | ] 20log .

1
( | )

l

t T

T
l

s t
l

s t dt
T






B

B

θ
PARP θ

θ

 (4) 

It is interesting to minimize the peak to average power ratio [ | ]lPARP θ , the bit error rate 

[ | ]lBER θ , symbol error rate [ | ]lSER θ , inter-symbol interference [ | ]lISI θ  and is to improve 

the PHY-LS of wireless transmissions against to the wide-band anti-jamming and anti- eavesdropping 

communication by chaining of parameters θ . In practice the PARP  is defined in terms of the 

discrete signal  ( [ ]) ( [ ]) ( [ ]) ( [ ])

0 1( ) ( ),..., ( ),..., ( )l l l l

v Ns s s B B B B
s θ θ θ θ

 
as 
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( [ ])

[0, 1]

2
( [ ])

[0, 1]

max ( )
[ | ] 20log .

1
( )

l

v
v N

l

v

v N

s
l

s
N

 

 





B

B

θ
PARP θ

θ

 (5) 

The signal ( [ ]) ( | )ls tB
θ  is then AM-modulated 02( [ ])1 ( | )

j f tlm s t e
    

B
θ  to the carrier frequency 0f  

and radiated to a wireless medium, the so-called radio channel (RF), before it is picked up at the 

receiver side. Here m  is the AM-modulation index.  

At the receiver side, after AM-demodulation and discretization by analog-to-digital converter (ADC) 

from received signal ( | )r t θ  
we obtain the received symbols  

  ( [ ]) ( [ ]) ( [ ]) ( [ ])

0 1( ) ( ),..., ( ),..., ( ) .l l l l

v q Nr r r B B B B
r θ θ θ θ   

They are the transmitted symbols  ( [ ]) ( [ ]) ( [ ]) ( [ ])

0 1( ) ( ),..., ( ),..., ( )l l l l

v Ns s s B B B B
s θ θ θ θ

 
plus additive Gaussian 

noise samples: 

 
 

 

( [ ]) ( [ ]) ( [ ]) ( [ ])

0 1

( [ ]) ( [ ]) ( [ ]) ( [ ])

0 0 1 1

( ) ( ),..., ( ),..., ( )

( ) ( ) ( ),..., ( ) ( ),..., ( ) ( ) .

l l l l

v q N

l l l l

v v N N

r r r

s l s l s l



 

 

        

B B B B

B B B B

r θ θ θ θ

s θ ξ θ θ θ
  

At the receiver side the process is reversed to obtain the data. The signal 

 ( [ ]) ( [ ]) ( [ ]) ( [ ])

0 1,..., ,...,l l l l

v Nr r r B B B B
r

 
is demodulated by direct N -tap MPT. The output of direct MPT is 

represented as follow: 

 
 

0 1

0

( [ ]) ( [ ]) ( [ ]) ( [ ]) ( [ ])

0 1

( [ ]) ( [ ]) ( [ ])

0 0 1 1

( [ ]) ( [ ])

0 0

( ) ( ),..., ( ),..., ( ) ( ) ( )

( ) ( ),..., ( ) ( ),..., ( ) ( ) ( )

( | ),..., ( | ),...,

k k N

k

l l l l l

k N N

l l l

v v N N N

l l

k k N

R R R

s l s l s l

Z l Z l Z





 

   

        

   


b b b b B

B B B

b b

R θ θ θ θ r θ θ

θ θ θ θ

θ θ 

 

1

0 1

( [ ]) ( [ ])

1 1

( [ ]) ( [ ]) ( [ ]) ( [ ])

0 0 1 1

( | ) ( | ) ,

( | ),..., ( | ),..., ( | ) ( | ) .

N

k N

l l

N

l l l l

k k N N

l l

Q l Q l Q l l





 

 

    



       


b B

b b b B

θ Z Ξ θ

θ θ θ Q Ξ θ

 

After that the maximum-likelihood algorithm (MLA) gives the optimal estimation of the signal 
( [ ])lB

Z  (or ( [ ])lB
Q ): 

 

 

 

0 1

0 1

0

( [ ]) ( [ ]) ( [ ]) ( [ ]) ( [ ])

0 1

( [ ]) ( [ ]) ( [ ])

0 0 1 1

( [ ])

0 0
2 -

ˆ ˆ ˆ ˆ,..., ,..., ( | )

( | ) ,..., ( | ) ,..., ( | )

min ( | ),

k N

k N

d

l l l l l

opt k N

l l l

k k N N

l

Z

Z Z Z l

Z l Z l Z l

Z l Z







 



    
 

          
     

  

B b b b B

b b b

b

CD

Z MLA Z Ξ θ

MLA θ MLA θ MLA θ

θ     1( [ ]) ( [ ])

1 1
2 - 2 -

,..., min ( | ), ,..., min ( | ), ,
k N

d m

l l

k k N N
Z Z

Z l Z Z l Z


 
 

 b b

CD CD
θ θ 

(6) 

for complex OFDM and 

 

 

0 1

0 1

0

( [ ]) ( [ ]) ( [ ]) ( [ ]) ( [ ])

0 1

( [ ]) ( [ ]) ( [ ])

0 0 1 1

( [ ])

0 0
2 -

ˆ ˆ ˆ ˆ,..., ,..., ( | )

ˆ ˆ ˆ( | ) ,..., ( | ) ,..., ( | )

ˆmin ( |

k N

k N

d

l l l l l

opt k N

l l l

k k N N

l

Z

Q Q Q l

Q l Q l Q l

Q l







 



    
 

            
     

  

B b b b B

b b b

b

CD

Q MLA Q Ξ θ

MLA θ MLA θ MLA θ

      1( [ ]) ( [ ])

1 1
2 - 2 -

ˆ ˆ), ,..., min ( | ), ,..., min ( | ), ,
k N

d m

l l

k k N N
Z Z

Z Q l Z Q l Z 


 
 

   b b

CD CD

θ θ θ

 

for quaternion OFDM, where   is the Euclidean distance on the complex plane C  or on 4 ( )R  and 

the symbol "^ "over means estimated value. Finally, estimation of bit stream is given as 
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0 1

0 1

1 ( [ ]) 1 ( [ ]) 1 ( [ ]) 1 ( [ ])

0 1

ˆ ˆ ˆ ˆ[ | ] [ | ],..., [ | ],..., [ | ]

ˆ ˆ ˆ ˆ( ) ( ) ,..., ( ) ,..., ( ) ,
k N

k N

l l l l

opt k N

l l l l

Z Z Z




   



 

 B b b b

B θ b θ b θ b θ

CM Z θ CM θ CM θ CM θ
 (7) 

 

        
0 1

0 1

1 ( [ ]) 1 ( [ ]) 1 ( [ ]) 1 ( [ ])

0 1

ˆ ˆ ˆ ˆ[ | ] [ | ],..., [ | ],..., [ | ]

ˆ ˆ ˆ ˆ( ) ( ) ,..., ( ) ,..., ( ) ,
k N

k N

l l l l

opt k N

l l l l

Q Q Q




   



 

 B b b b

B θ b θ b θ b θ

QCM Q θ QCM θ QCM θ QCM θ
   

(8) 

where    ˆ ˆˆ ˆ[ | )] [ | )] ( ) | |k l lN k b lN k d r b m     b θ b θ θ θ  is an estimation of initial bit stream.  

Here,  ( )m lN k d r lNd kd r       and 0,1,... ,l  0,1,..., 1,k N  0,1,..., 1.r d   

The BER and SER for thl time slot are defined as 

  

   
1 1 1

0 0 0

1 1ˆ ˆ[ | ] ( ) ( ) ,
N d Nd

k r m

l b lN k d r b lN k d r b m b m
Nd Nd

  

  

                      BER θ θ θ θ θ  (9) 

       

   
11 1

0 00

1ˆ ˆ ˆ[ | ] ( ) ( ) .
dN N

k k

k kr

l b lN k d r b lN k d r l l
N

 

 

                      SER θ θ θ b θ b θ  (10) 

All transmitted  ( [ ]) ( [ ]) ( [ ])

0 1( ) ( ),...,s ( )l l l

Ns B B B
s θ θ θ

 
and received  ( [ ]) ( [ ]) ( [ ])

0 1( ) ( ),..., ( )l l l

Nr r B B B
r θ θ θ

 
symbols 

depend on parameters 
1( ,..., )q  θ . This dependence can be used for multiple purposes such as, anti-

eavesdropping and anti-jamming in order to increase the system secrecy, and for PAPR reduction (see 

the next parts of our work). 

4. Conclusion 

In this paper, we proposed a novel Intelligent OFDM-telecommunication systems based on many-

parameter transforms (MPTs). The purpose of employing the MPT is to improve:  1) the PHY-LS of 

wireless transmissions against to the wide-band anti-jamming and anti-eavesdropping communication; 

2) the bit error rate (BER) performance with respect to the conventional OFDM-TCS; 3) the peak to 

average power ratio (PAPR). The new systems use Inverse MPT (IMPT) for modulation at the 

transmitter and MPT for demodulation at the receiver. Each MPT depends on finite set of independent 

parameters (angles), which could be changed in dependently of one another. When parameters are 

changed, multi-parametric transform is changed too taking form of a set known (and unknown) 

orthogonal (or unitary) transforms. The main advantage of using MPT in OFDM TCS is that it is a 

very flexible system allowing to construct Intelligent OFDM TCS for electronic warfare (EW). EW is 

a type of armed struggle using electronic means against enemy to “change the quality of information”. 

EW includes (consists) of suppressor (in our case Eve or Jamie) and protector (Alice and Bob). 

Suppressor aims to “reduce the effectiveness” of enemy forces, including command and control and 

their use of weapons systems, and targets enemy communications and reconnaissance by changing the 

“quality and speed” of information processes. In reverse, EW in defense (Alice&Bob) protects such 

assets and those of friendly forces. The general suppressor’s goal is interception of Alice’s and Bob’s 

private communications means the same OFDM-TCS. In order to protect corporate privacy and 

sensitive client information against the threat of electronic eavesdropping and jamming Alice and Bob 

use intelligent OFDM-TCS, based on MPTs. The system model that is going to be used in this work is 

know as the wiretap channel model, which was introduced in 1975 by Wyner [4]. This model is 

composed of two legitimate users, named Alice and Bob.  

A legitimate user (Alice) transmits her confidential messages to a legitimate receiver (Bob), while 

Eve will be trying to eavesdrop Alice’s information. An active jammer, named Jamie, attempts to jam 

up this information. Alice transmits her data using OFDM with N  sub-carriers 

 
1

0 0

1 0
( | ,..., ) ,

N

k q k
Subc n




   i.e. she use the unitary transform 0 0( )N N θ  with fixed parameters 

http://context.reverso.net/перевод/английский-русский/electronic+eavesdropping
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0 0 0

1( ,..., )qθ   . When sub-carriers  
1

0 0

1 0
( | ,..., )

N

k q k
Subc n




   (i.e. unitary transform 0( )N θ ) of Alice’s 

and Bob’s Intelligent-OFDM-TCS are identified by Eve (or Jammi) this TCS can be eavesdropped (or 

jammed) by means of Radio-Electronic Eavesdropping Attack (REEA). As an anti-eavesdropping and 

anti-jamming measures, Alice and Bob can use the following strategy:  they can select new sub-

carriers by changing parameters in ( )N θ in the periodical (or in pseudo random) manner 

     0 0 0 0 0 0

1 2 1 2 1 1 2 2, ,..., , ,..., , ,..., ,rT rT rT rT rT rT

q q q q                 0,1,2,... r  , 

where 0 0 0

1( ,..., )qθ    are initial values of parameters at the initial time 0t ,  T  is the period of changing 

parameters. Theoretical analysis and simulation results prove that the proposed new system has better 

anti-eavesdropping and anti-jamming performances than the conventional system. 
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