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Abstract. In this paper, we propose unified mathematical forms of many-parametric Fourier
and wavelet transforms (MPFT and MPWT) for novel Intelligent OFDM-telecommunication
systems (OFDM-TCS). Each many-parametric transform (MPT) depends on many free angle
parameters. When parameters are changed in some way, the type and form of transform are
changed as well. For example, MPT may be the Fourier transform for one set of parameters,
wavelet transform for other parameters and other transforms for other values of parameters.
The new Intelligent-OFDM-TCS use inverse MPT for modulation at the transmitter and direct
MPT for demodulation at the receiver.

1. Introduction

One of the best-unknown MPT was developed by the 19" century mathematician Jacobi [1]. The
Jacobi algorithm composes method for computing the eigenvalue decomposition of symmetric matrix
or for many-parameter representation of an orthogonal matrix U[2]-[3]. We recall that Jacobi’s
sequential method (Jacobi cyclic row algorithm (JCRA)) reduces an orthogonal matrix U to identical

matrix by applying orthogonal rotations to right of U, Q:U-J((opq), where orthonormal Jacobi

rotation with reflection

p q
1 0 0 0
p 0 ---igci--- S i--- 0
‘]((pp,q): : R : o
q 0 ---igi.e. i —C i--- 0
0 ---iQi--.- 0i--- 1 (1)

is used to reduce the element U, or A, to zero. Jacobi rotation J(gopq) operates on p-th and g-th

element of the p-th row of U, U and U :
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such that Q,, becomes zero. For Q,

expression  for
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(C,S)Z[Uy — ,Uy N— ] For example,
Upp+qu Upp+Upp

Q(I\P =Uy 'J(%z):

p q
~ Qpp Qpq _ cilUp e Uy 0 ¢ s i 0
Qg Qqq " Up o Uy 0 s ¢ 0
=0 it must be required: -U_ c+U_ s=0. Hence, the
tg(p,) become  tg(@,)=U,/U, . This is equivalent to
+ 1 b + + 1 1 1
1 1 1 1 1 , Qilz) _ UN . J(¢12)J(¢13) — 1 1 1 1 1 1
where white boxes are nonzero elements and black box is the zero element. Further,
QLZ) = UN : ‘](%Z)J (¢13)‘J ((014) = Q?\JN_l) = LJN : J(¢12)J (gols) Tt .J(ngN ) =
+ + + + + + + o+

But Q'™ is an orthogonal matrix as the product of orthogonal

only the following form:

ngjNil) = UN 'J(¢12)‘](¢13)"-‘](§01N): UN 'ﬁJ((pl'q) -

’

)

3

’

)

matrices. For this reason it can have

I+
-
+

+ + + o+

+

where Q,_, is (N —1)x(N—1) orthogonal matrix opposite to Q=Q, that is (N xN) orthogonal

matrix. Obviously,

Q
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+
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Hence, an orthogonal matrix U is composed of series of Jacobi rotations: U((p):ﬁlﬁ.]((opvq),
=1 q=p+l

where @=(¢,,, @, 5.,y y) 1S N(N +1)/2-dimension vector of so-called the Jacobi anpgleqs ;pq. Here
ﬁlTizTOTlmT”‘1 and ilfTizT”‘1~--T1T0 are the right and left multiplications, respectively. Many-
i=0 i=0

parameter representation U(¢) = ﬁl ﬁ J(p,,) is very important with theoretical point of view, but it
is not very useful with digital procpe:slsc;;p;point of view.

The concept of fast MPT in signal and image processing was printed by Andrews [4] in the form of

cos singoi} 12

tensor product of Jacobi (2x 2)-matrices Jz(goi)z{ )
sing, —cose,

Cos ¢, sing cosp,  Sing,
Cszn(%’?‘)z’-"v(pn)=J2(¢1)®"'®Jz((ﬂn):|: ' 1:|®'--®{ }

sing, —cos¢, sing, —Cosg,
This tensor product is factorized into the ordinary product of sparse matrices

CS, (2100 0) =[] [ 1 ®3:(0)®1,. |
i=1

It is just the fast Andrews transform (FAT). In particular case, when ¢, =@, =...=@, =714, we
. . nfl 1 1 1 1 1
obtain ordinary Walsh transform W,, =(\/§/2) L }@L }@---@L J.

Analogously form has n-parameter Haar transform [7-10]

HT, (0.2, 9,) =]l[[(32((/)i) ®1,.)® Iznfznf.ﬂ]Pzn,
i=1

where P, is the perfect shuffle permutation matrix [11]. Obviously,

T -
HT, (Z’Z""’Zj =HT, [l en )01, 6,

is the ordinary Haar transform. Recently, several authors [10]-[20] have proposed Jacobi
parametrization of wavelet transforms.

In the first part of our work [12], we proposed anti-eavesdropping and anti-jamming Intelligent OFDM
telecommunication system (TCS), based on many-parameter transforms (MPTSs). In this part, we
propose two novel families of MPTs: 1) many-parameter wavelet transform (MPWT)

\/\/'I'2n (@1, 95, 90,) for Intelligent MPWT-OFDM-TCS and 2) many-parameter Fourier transform

(MPFT) F (%) for Intelligent MPFT-OFDM-TCS.

The contents of the paper are organized as follows. Section 2 of the paper presents a brief introduction
to the novel many-parameter wavelet transforms and packets (MPWP). Sections 3 presents many-
parameter and fractional Fourier transforms.

2. Many-parameter wavelet transforms

The main goal of this section is to show that wavelet transforms and packets have the multi-parametric
representations in the form of a product of the Jacobi rotation matrices. The wide class of orthogonal
cyclic wavelet transforms WT can be defined by two sets of coefficients: h,,h,,....,h , and g,,9,,

..»9,,, where L=2D is an even number [13]-[14]. In fact WT is determined only by a set of h-
coefficients h,, h,, ..., h_, since the second set of coefficients is usually assigned according to the
rule g,=h_,, 9,=-h_,, ..., g, =-h,. For this reason, we will designate wavelet transform as
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VVTZn[hO,hl,...,thl]. Let m=Jlog, D[ be the smallest positive integer such that the wavelet
transform WT,, is factorized into a product of sparse matrixes, named stairs-like atomic wavelet
transforms AWT, ., [hy,h,,....h

—n-1

W,y Ry 1= T 1| AWT, ol B o] @11, | o
For example, for the (8x8) -Daubechies-4 wavelet transform we have
‘hO hl h2 h3
0 hl 2 h3
hO hl h2 h3 ) 0 hl h2 h3
h, hy hy h, h h h
WT,| h,h,h, h, |=|AWT, @1, |-| AWT, |= el, |
8|: (UL ] 3] |: 4 A:H: 8:| go ““““ gl ““““ gz ““““ g3 4 ‘go gl gz 93
gz g3 go gl ] go gl gZ g3
‘ 9% 9 9, G
9, O 9% 0

We are going to prove that multi-parametric representation of wavelet transform exists and that it
depends on D angle-parameters. In order to find multi-parametric form of wavelet transform we use

the rotation-reflection Jacobi (2" x2")-matrix J, ,(¢) . For this matrix we have J, (9)J,,(p)=1
and J;, (¢ )=J,,(p). We are going to multiply the atomic wavelet matrix AWT., by J . (¢)-
matrices sequentially with such choice of angles @,...¢,¢, for any Kk, that product

J - (@)..-J - (p)-J 0.t () A 2H1[h h,,. ,hH] will be a permutation matrix P, or unit matrix

| " It gives the following result:

—»D-12"-1
AWT2r+1|:h0' h,..., h2D—1:| 2r 1|:(Po-(911 2 Pp_ 1:|P2r+1 :{ H H |®k o 1k (@) J ori
) 3)

where @ is addition modulo 2". The classical cyclic wavelet transform is constructed from atomic
2r

wavelet transforms according to (2). Substituting (10) in (2) we obtain the multi-parametric
presentation of wavelet transforms

[ho' hy o hpp = WT,, (90 P 05 1] = —ﬁ I:(_i_[ 1__[ i®k.2" 1k (@) ] 2n pred ] “4)

r=m i=0 k=0 of
MPT WT,,[¢, @, 95 1] has the form of the product of the sparse Jacoby matrixes, which describes
a fast algorithm for this transform. It is possible to obtain all the transforms of WTlG[hO,hl,hz,hS]—

type by changing the angles ¢, and ¢,. In Fig. 1 we see wavelet function (mother and farther
functions) as subcarriers for different values of parameters ¢, and ¢, .

All the atomic matrices in multi-parametric representation of wavelet transform are characterized by
the same set of angle-parameters. All angles have equal values in each atomic matrix and have to be
chosen synchronously. Of course, it is possible to use different angle sets in different atomic matrixes
and to change them not synchronously. In this case we will get heterogeneous many-parameter
wavelet transforms. For example, let us introduce

—»D-12"-1
AWT2r+1|:(P(';’(P17 S Pp 1:| (H H |®k otk (o k)J ret s (5)

i=0 k=0
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where ¢ = (¢’(§,o’¢75,1v---1¢(;‘2r,1)a g = ((Pll,m¢11,11---1¢7i2r,1)v---v(|)rn-1 = (wer—l,O’(DL[)—l,li""(Dr),lyzr,l)' In this case
AWT,,, dependon D- 2" parameters. A heterogeneous many-parameter wavelet transforms will have

the following form

—-n-1

W, [06.97 - 9550 9071070537 <P3,<|>f,---,<p3,1]=H[AWTZM[%API,---,tp’D,l]-sz @IMM}
r=m

-n-1| [ »D-12'-1
= H H HJi@k,2r+k (¢|k) P2r+1 ® |2n72r+1 i

r=m i=0 k=0 or

Itdependon q=D-2"+D-2™ +..+D-2"'=2".D. (2"’”‘ —1) parameters.

i

c) d)
Figure 1. Wavelet mother and farther functions as subcarriers for different values of parameters
@, and ¢,: a) g, =204",¢, =291", b) ¢, =180°,¢, =135, ) ¢, =199°,¢p, =80°, d) ¢, =138°,¢p, =337°.

3. Fractional and many-parameter Fourier transforms
The eigen—decomposition (ED) is a tool of both practical and theoretical importance in digital signal
and image processing. The ED transforms are defined by the following way. Let U be an arbitrary

discrete orthogonal (or unitary) (N x N)—transform, 2, and |‘Pm(n)> m,n=0,1...,N -1, be its
eigen—values and eigen column-vectors, respectively. Let U=[|\PO(n)>,|‘P1(n)>,...,|\PN71(n)>] be
the matrix of eigen-vectors of the U —transform. Then U™-U-U= Diag{xo,...,kN_l} = A. Hence, we
have the following eigen—decomposition:

U=[u(n)]:= Nz_;xm ¥, (K))(¥,, (n)] =U-Diag (... Ay, )- U™

Definition 1. For an arbitrary real numbers a,,...,a we introduce the multi-parameter U-

N-1
transform
U = U Diag(A,... A% )- U™ ©
If a,=...=a,_, =a then this transform is called the fractional U—transform. For this transform we
have
U*:=U{diag(15,....A5, )| U =UA U™, )
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The zeroth-order fractional U —transform is equal to the identity transform: U’ =UA°U™" =UU™ =1
and the first-order fractional U -transform operator is equal to the initial transform U'=UAU™.

The families {U(%wm)}( ) and {Ua} form multi- and one-parameter continuous unitary
(VINIY RN aeR
groups with multiplications U1 y®o--ta) = ylorho-aasta) gng - Y2UP = Y**®,

.2n N-1
Let F, {e N } be the discrete Fourier (N x N)-transform (DFT). Relevant properties are that
k,n=0

the square (F ¢ f)(x) = f (-x) is the inversion operator, and that its fourth power (F¢f)(x)= f(x) is
the identity; hence FJ =F," The operator F, thus generates the Fourier cyclic group of order 4:

Gr,(F) :{FNa}ae{o,l,za} :{I’F’\}’FNZ’F’\?}'

The idea of fractional powers of the Fourier operator F appears in the mathematical literature [21-
28]. This idea is to consider the eigen-value decomposition of the Fourier transform

X))(¥, ()| in terms of eigen-values 1, =™ = j" and eigen-functions ¥, (x) in

) is
constructed by replacing the n-th eigen-value A, =e™? by its a-th power A2 =e™?, for a

between 0 and 4.
The eigenvalues of the standard DFT matrix F, are the fourth roots of unity, to be denoted by

A € {ej’M}3

s=0

the form of the Hermite functions. The family of FrFT {F a}a o, (instead of {F}

a<{0,1,2,3}

e{tl+j} and {\Pm(n)}::) are the discrete Hermite polynomials. This divides the

space of N-point complex signals into four Fourier invariant subspaces whose dimensions N are the
multiplicities of the eigenvalues A,, which have a modulo 4 recurrence in the dimension
N=2"=4M given by Ny=M+LN,=M -1, N,=M, N, =M. Let
s(n):{0,4,2,...,N-1}3 —{0,1,2,3} be a peculiar function. It determines a distribution of eigen-values

o . iZs(ma | . . . . .
along main diagonal Dlag[eJZS ' aJ in (8). This function takes M +1 times value 0, M —1 times

value 1, and M times values 2 and 3. In particular, s(0) =0.
Definition 2. The discrete classical and Bargmann fractional Fourier transforms are defined as

Fe =[] U{Diag[e"?“m”}ul =3 e |, (k) ()]
" (®)

BF"":[belﬁa)(n)]:zU{Diag(ej;maj} X lejg |W o, () (W, ()],
=0 ©

Definition 3. The discrete classical-like and Bargmann-like multi-parameter DFT we define by the
following way

(a) (80.8y,8;,....8y ) (a) . iZs(m)ay, 4 N1 % (m)a,,
F @ =F (ommrta) _[6@(n) | = U diag| e 2 ut=>e"

m=0

3

¥ () (Fn()],  (10)

N-1 .7

BF ® =BF (%) = [he® (n) | = {diag(ejzmam]} ez | W, () (¥, ()], (11)

m=0

where a=(a,,a,,a,,...,ay_)-
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The parameters (a,,...,a,,) and @ can have any real values. For each fixed values (a;,...,ay ) and

(302 and F ® which are called the realizations of MPFT

a~ we obtain concrete transforms F
F @--a1) and FrET F 2, respectively. All realizations of F ®*+) and F ® form two ensembles of

transforms.The operators F (@--a) and F* are periodic in each parameter with period 4 since
E4Z1  and  hence  F s tuobo g [oesd) g e g (a?b), where
3, ®h =(a +b)mod4, Vi=1,..,N—-1. Consequently, the ranges of (a,,...,a,,) and a are tori
Tor}' " =(2/42)"" =[0,4)"* and Tor; :=Z/4Z=[0,4).

In the case of a.—parameterization F ® =F (“>*“~2) and F * where 0 =(ay,ay,..., o, ), We have
aigﬁi =(0; +B;)mod2r, Vi=0,1,...,N 1. Consequently, the ranges of (a,...,00y) and a are tori
Toryt =(z/27z)" " =[0,2m)"* and Tor,, :=Z/ 2nZ =[0,2n), respectively. Hence, ensembles

{F (0.8 .--8n1) (aO,al,”_,aN_l)eTorlefl} and {F ‘”|aeTor4} (12)

form two multiplicative groups are isomorphic to (Z/4Z)"" and Z/4Z: in a— parametrization,

respectively. In a —parametrization they form two multiplicative groups
{F O — F (000 0=(0l,0ty,..., 0Ly, ) eTorz'\T';l} and {F im|oc eTorZR}. (13)

In (12) and (13) &, =a, =0.

Figure 2. The two topological independent curves T', and I, on a two-dimensional torus.

Any (N -1)-D torus Tor, ™ is a periodic object which can be considered as the product of N —1
independent periodicities: Tor)." =Tor,_xTor,_x..xTor,, . In other words, we can define N —1

N -1 times
topologically independent closed curves, I';,T,,...,I'y;, On a given torus, where none of the T, can be

deformed continuously into each other or shrunk to zero. In Fig. 2 we represent a 2-D torus for which
T, turns around through the longest path while T, does it through the shortest path. Note that neither

I, nor T", can be converted into each other by continuous transformations. In effect, let us denote by

Aa;, the change of the angle variable o,. If angle variable o, changes in 2r, then the F (%)
executes a complete oscillation along the curve T'; and no change otherwise.

Now we are going to show, that a many-parameter Fourier transform has 1-parameter representation.
Definition 4. Let I, =(1,0,..,0),I,=(041,..,0),..,I,,=(0,0,..,1) be a finite set of vectors

N-1

N-1
1,y €Tor, ", define @ =(0,0,,...0y,)=> ol, where o =2nrf >0. Then the set
i=1
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N-1
to =(to, to,,....toy ;)= tal, is called the trajectory on Tor, "

i=1

along the frequency vector

0 =(0,0,,...,04,). If (a,0,,...,0_)=(to,to,,...,to,_ ) then

is multiply periodic operator-valued functions with N-1 independent (angular) frequencies
®,0,,..,0,,;, and o, =0. However, this property does not imply that, in general, the F,f“"""‘““*” is
(simply) periodic functions; for it would be necessary that there exists a single period Q, for which

(oal,wz,...,oaN_l) are integer multiples of a single frequency Q,: o, = Py, 1=12,..,N-1 where
p, =0,+1+2,.. are integer numbers. Equation w, = p;Q2, means that in order to have periodic motion,
the frequencies must be commensurable. From o, = p;,2, we immediately see that this is equivalent

to assuming that all frequencies are rational multiples of each other: o _B =a rational number. If
©; P

the frequencies are incommensurable, in other words, if they are not rationally related, then the motion

is termed multiply periodic or quasiperiodic or conditionally periodic, according to different

terminologies in use, and never repeats itself.

Figure 3. The Comparison of trajectories on 2-D tori. The curve in (a) is a rational trajectory, where
o,/ ®, =3,, that is, the trajectory closes over itself after three turns around I'; and one turn around T,

. The curve in (b) is an irrational trajectory, where the frequencies are not commensurable. In (b) the
trajectory will eventually cover the surface of the torus densely.

We can, therefore, conclude that on a given torus, the trajectory will be a closed curve (i.e. the motion
of the system will be periodic) if and only if the frequencies of the motion are commensurable. When
frequencies are incommensurable the trajectory will densely cover the torus, never closing on itself.
In the first case, we call it rational, or resonant, trajectory, while in the latter irrational, or nonresonant,
trajectory (see Fig. 3). For this reason, a many-parameter Fourier transform

E (0ot aus) _ p Hopormons) _ o :(F“’)t is an one-parameter periodic representation of MPFT

F (Cocrana) jf trajectory te is resonant, and MPFT is an one-parameter quasi-periodic representation
of MPET F (o) i trajectory te is nonresonant. In both cases MPFT is fractional power of the
transform F © but not F .

Let us introduce the uniformly discretization (sampling) of t -parameter: t*) =kAt (k=0,1,...,M —1).

We have discrete values o =t™m, =kAte, and obtain transform with single discrete parameter
Discr

F (Cotumtna) o Kt stontten o) - Bigeretization (sampling) of parameter t give discrete trajectory
on torus (see Fig. 4).
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Figure 4. Discrete trajectory.

4. Conclusion

In this paper, we have shown a new unified approach to the many-parametric representation of
orthogonal wavelet and Fourier transforms. This form is the product of sparse rotation matrixes and it
describes fast algorithms for introduced many-parameter transforms. Defined representation of many-
parameter transforms (MPT) depend on finite set of free parameters, which could be changed
independently of one another. For each set of values of parameter we get the unique orthogonal
transform. We are going to use these MPTs for constructing of two novel Intelligent OFDM-
telecommunication systems The new systems will use inverse MPT (or inverse MPT) for modulation
at the transmitter and direct MPT (or direct MPT) for demodulation at the receiver.
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